Neues aus der Uroonkologie ASCO 2023

PD. Dr. med. Christoph Lutz Praxis für Hämatologie und Onkologie Koblenz 05.07.2023

Übersicht

- 1. Prostatakarzinom
- 2. Nierenzellkarzinom
- 3. Urothelkarzinom

TALAPRO-2: Phase 3 study of talazoparib plus enzalutamide versus placebo plus enzalutamide as first-line treatment for patients with metastatic castration-resistant prostate cancer harboring homologous recombination repair gene alterations (HRR-deficient population)

Karim Fizazi,¹ Arun A. Azad,² Nobuaki Matsubara,³ Joan Carles,⁴ Andre P. Fay,⁵ Ugo De Giorgi,⁶ Jae Young Joung,⁷ Peter C. C. Fong,⁸ Eric Voog,⁹ Robert J. Jones,¹⁰ Neal D. Shore,¹¹ Curtis Dunshee,¹² Stefanie Zschäbitz,¹³ Jan Oldenburg,¹⁴ Xun Lin,¹⁵ Cynthia G. Healy,¹⁶ Nicola Di Santo,¹⁷ Fabian Zohren,¹⁸ Neeraj Agarwal¹⁹

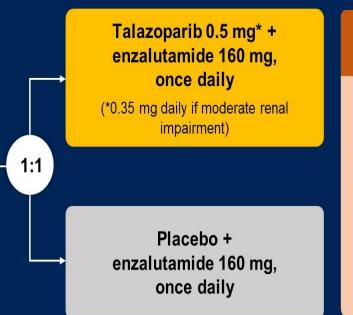
 ¹Institut Gustave Roussy, University of Paris-Saclay, Villejuif, France; ²Peter MacCallum Cancer Centre, Melbourne, Australia; ³National Cancer Center Hospital East, Chiba, Japan; ⁴Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; ⁵PUCRS School of Medicine, Porto Alegre, Brazil; ⁶IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, Meldola, Italy; ⁷National Cancer Center, Goyang, Republic of Korea; ⁸Auckland City Hospital and University of Auckland, Auckland, New Zealand; ⁹Clinique Victor Hugo Centre Jean Bernard, Le Mans, France;
¹⁰School of Cancer Sciences, University of Glasgow, Beatson West of Scotland Cancer Centre, Glasgow, UK; ¹¹Carolina Urologic Research Center, Myrtle Beach, SC, USA; ¹²Arizona Urology Specialists, Tucson, AZ, USA; ¹³National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany; ¹⁴Akershus University Hospital (Ahus), Lørenskog, Norway; ¹⁵Pfizer Inc., La Jolla, CA, USA; ¹⁶Pfizer Inc., Collegeville, PA, USA; ¹⁷Pfizer Inc., Durham, NC, USA; ¹⁸Pfizer Inc., New York, NY, USA; ¹⁹Huntsman Cancer Institute (NCI-CCC), University of Utah, Salt Lake City, UT, USA

ClinicalTrials.gov identifier: NCT03395197. This study was sponsored by Pfizer Inc. Astellas Pharma Inc. provided enzalutamide.

#ASCO23

PRESENTED BY: Professor Karim Fizazi Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

TALAPRO-2: A Randomized, Double-blind, Placebo-Controlled Study


Patient population

- First-line mCRPC
- · ECOG performance status (PS) 0 or 1
- Ongoing androgen deprivation therapy

Stratification

- Prior abiraterone^a or docetaxel in castration-sensitive setting (yes vs no)
- HRR gene alteration status (deficient vs nondeficient or unknown) (all-comers cohort only)

#ASCO23

Primary endpoint

rPFS by BICR^b

Key secondary endpoint

· Overall survival (alpha protected)

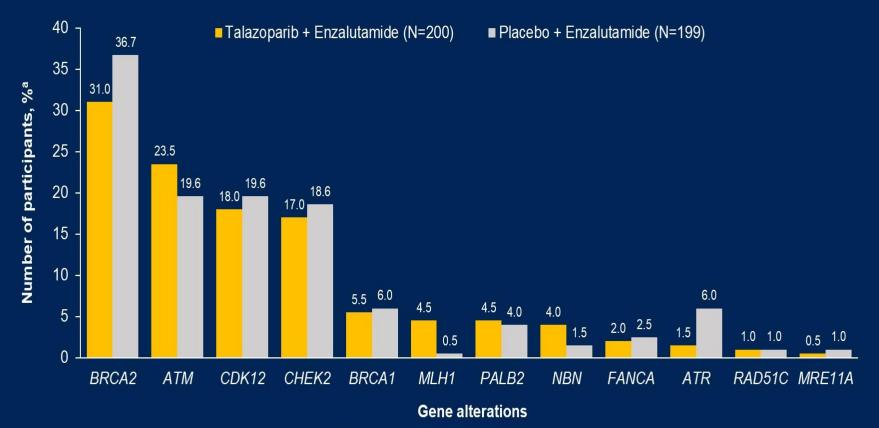
Other secondary endpoints

- Time to cytotoxic chemotherapy
- PFS2 by investigator assessment^c
- Objective response rate (ORR)
- Patient-reported outcomes
- Safety

Samples <u>prospectively assessed</u> for HRR gene alterations (*BRCA1*, *BRCA2*, *PALB2*, *ATM*, *ATR*, *CHEK2*, *FANCA*, *RAD51C*, *NBN*, *MLH1*, *MRE11A*, *CDK12*) using FoundationOne[®]CDx and/or FoundationOne[®]Liquid CDx

BICR=blinded independent central review; rPFS=radiographic progression-free survival.

*One patient in each treatment arm received prior orteronel. *Per RECIST version 1.1 (soft tissue disease) and Prostate Cancer Clinical Trials Working Group 3 (bone disease). *Time from randomization to the date of documented progression on the first subsequent antineoplastic therapy or death from any cause, whichever occurred first.


PRESENTED BY: Professor Karim Fizazi

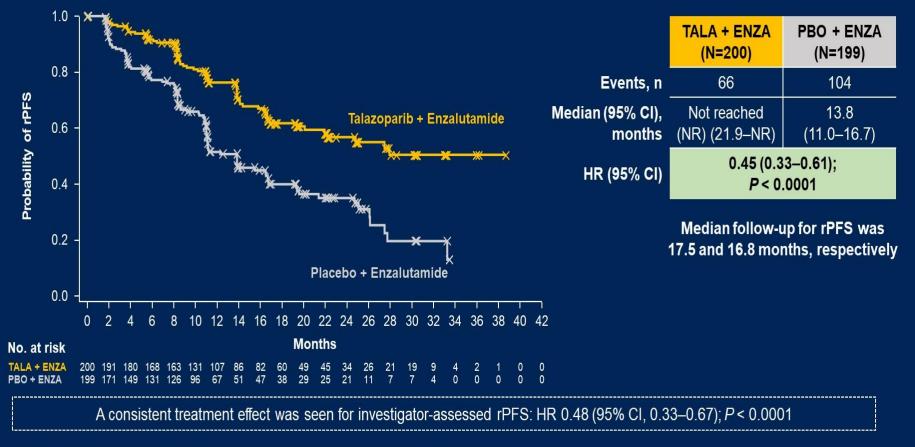
Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

TALAPRO-2 HRR-Deficient: Baseline HRR Gene Alterations

Representation of HRR gene alterations was consistent with previously published studies

During the mid-point of the study (January-November 2021), recruitment of patients with ATM and/or CDK12 alterations was paused to avoid over-representation. ^aNumber of participants with one or more alterations in corresponding gene. Three patients (1 in the talazoparib arm and 2 in the placebo arm) did not have HRR gene alterations, and 1 patient in the talazoparib arm was of unknown HRR gene alteration status.

#ASCO23


PRESENTED BY: Professor Karim Fizazi

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

TALAPRO-2 HRR-Deficient Primary Endpoint: rPFS by BICR

Treatment with talazoparib plus enzalutamide resulted in a 55% reduced risk of progression or death

Stratified hazard ratios (HRs) and 2-sided P values are reported throughout this presentation unless otherwise stated.

#ASCO23

PRESENTED BY: Professor Karim Fizazi

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

TALAPRO-2 HRR-Deficient: Subgroup Analysis of rPFS by BICR

A consistent treatment effect with talazoparib plus enzalutamide was seen in prespecified subgroups

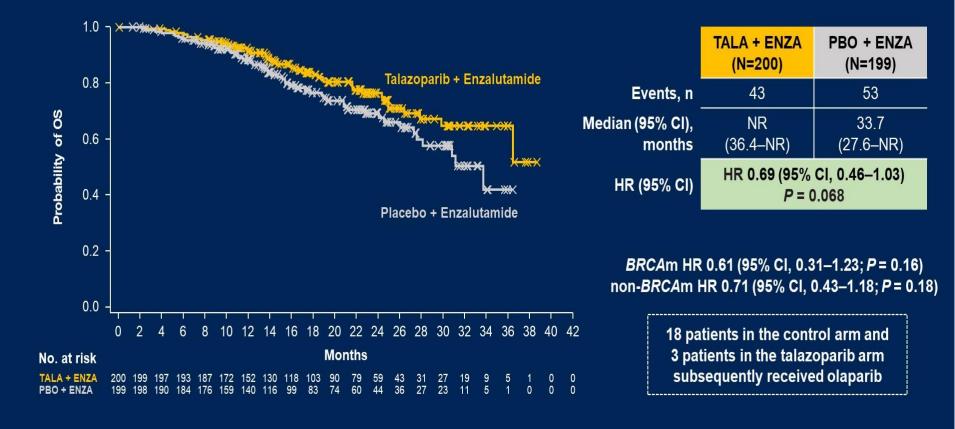
		Talazoparib + Enzalutamide	Placebo + Enzalutamide			1	HR (95% CI)	2-Sided <i>P</i> Value
Subgroup		Even	ts/N					
Overall		66/200	104/199				0.45 (0.33–0.61)	< 0.0001
Age, years	≥70	41/105	56/111				0.57 (0.38–0.86)	0.006
	<70	25/95	48/88				0.34 (0.21–0.55)	< 0.0001
ECOG PS	0	47/128	63/118	— — — — — — — — — — — — — — — — — — —	-		0.50 (0.34–0.74)	0.0003
	1	19/72	41/81	- <u>-</u>			0.39 (0.23–0.68)	0.0005
Gleason score	<8	13/42	20/52	-	•	-	0.71 (0.35–1.42)	0.33
	≥8	52/152	81/143	H)	4		0.40 (0.28–0.57)	< 0.0001
Stage at diagnosis	MO	24/84	43/84		-		0.42 (0.26–0.70)	0.0005
	M1	42/115	59/112				0.48 (0.32-0.72)	0.0002
Site of metastasis	Bone only	17/79	36/78		4		0.34 (0.19–0.60)	0.0001
	Soft tissue only	7/20	25/40				0.47 (0.20–1.10)	0.075
	Bone and soft tissue	41/96	43/80				0.50 (0.32–0.77)	0.0014
Prior abiraterone ^a or docetaxel	Yes	26/75	39/74		-1		0.43 (0.26–0.70)	0.0006
	No	40/125	65/125				0.46 (0.31–0.69)	< 0.0001
BRCA1/2	Yes	15/71	54/84	H			0.20 (0.11–0.36)	< 0.0001
	No	51/129	50/115	-			0.72 (0.49–1.07)	0.10
			0.0	0.5		1.0		
The HR for all patients, and by BRCA1/2 by the randomization stratification factor			Faura T	-l		la Faura Dias	-> obo + Enzolutomido	

by the randomization stratification factors. For all other subgroups, the HR was based on an unstratified Cox model with treatment as the only covariate.

Favors Talazoparib + Enzalutamide Favors Placebo + Enzalutamide

alncludes one patient in each treatment arm who received prior orteronel

#ASCO23


PRESENTED BY: Professor Karim Fizazi

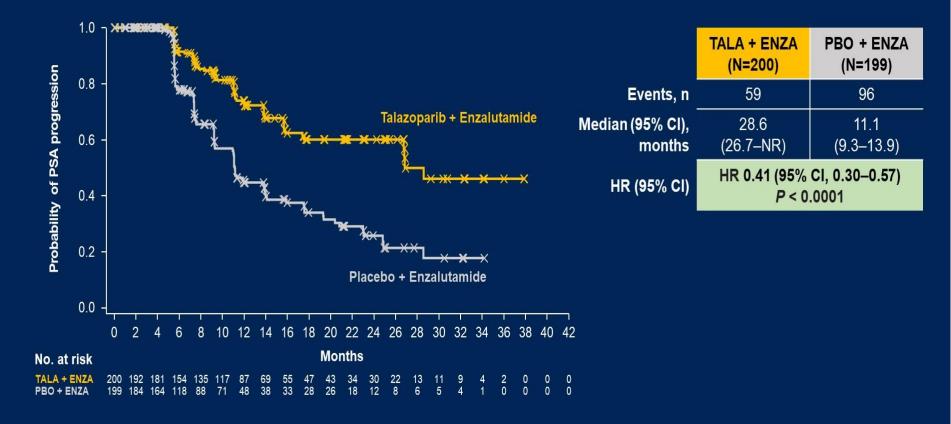
Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

TALAPRO-2 HRR-Deficient: Overall Survival (Interim Analysis)

Overall survival data are immature (24% maturity overall)

PRESENTED BY: Professor Karim Fizazi

ASC


#ASCO23

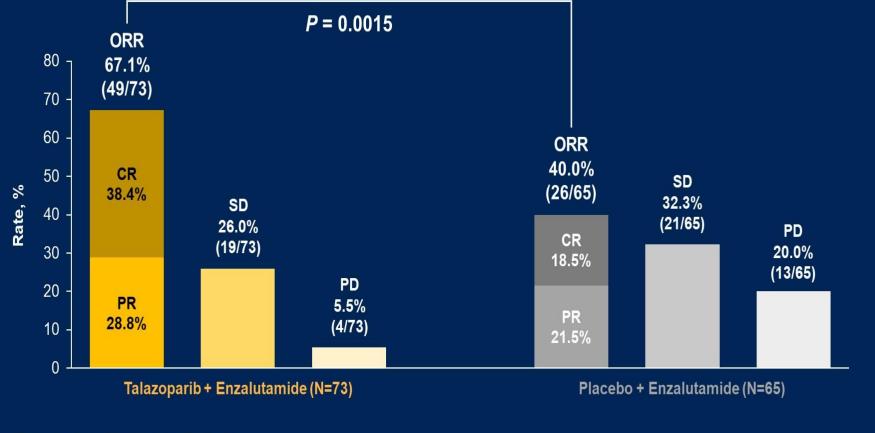
Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

TALAPRO-2 HRR-Deficient: Time to PSA Progression

Treatment with talazoparib plus enzalutamide prolonged time to PSA progression

PRESENTED BY: Professor Karim Fizazi Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

ASCC

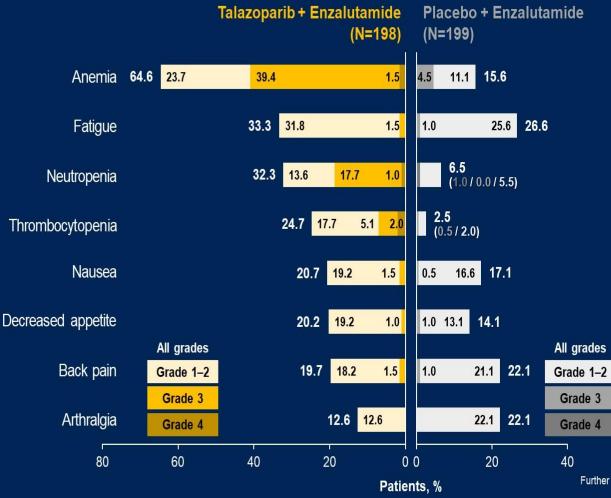

ANNUAL MEET

#ASCO23

TALAPRO-2 HRR-Deficient: Objective Response by BICR

Higher rates of complete response (CR) suggest a cooperative effect of talazoparib plus enzalutamide treatment

PD=progressive disease; PR=partial response; SD=stable disease.


#ASCO23

PRESENTED BY: Professor Karim Fizazi

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

TALAPRO-2 HRR-Deficient: Most Common All-Cause TEAEs

In the talazoparib arm:

- Most common TEAEs leading to a dose reduction of talazoparib were:
 - Anemia (42.9%)
 - Neutropenia (15.2%)
 - Thrombocytopenia (5.6%)
- 55.6% had grade 1–2 anemia at baseline
- Grade 3–4 anemia
 - Median time to onset was 3.2 months
 - Reported in 40.9% of patients
- 4.0% discontinued talazoparib due to anemia
- The median relative dose intensity of talazoparib remained >80%

Further safety details can be found by accessing abstract No. 5053 (poster No. 147)

#ASCO23

PRESENTED BY: Professor Karim Fizazi

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

- 1. Prostatakarzinom
- 2. Nierenzellkarzinom
- 3. Urothelkarzinom

Efficacy and safety of atezolizumab plus cabozantinib vs cabozantinib alone after progression with prior immune checkpoint inhibitor treatment in metastatic renal cell carcinoma: Phase III CONTACT-03 study

<u>Toni K. Choueiri</u>,¹ Laurence Albiges,² Piotr Tomczak,³ Cristina Suárez,⁴ Martin H. Voss,⁵ Guillermo de Velasco,⁶ Jad Chahoud,⁷ Giuseppe Procopio,⁸ Hakim Mahammedi,⁹ Friedemann Zengerling,¹⁰ Chan Kim,¹¹ Suyasha Gupta,¹² Guillaume Bergthold,¹³ Bo Liu,¹² Melania Kalaitzidou,¹⁴ Mahrukh Huseni,¹² Christian Scheffold,¹⁵ Thomas Powles,¹⁶ Sumanta Kumar Pal¹⁷

¹Dana-Farber Cancer Institute, Boston, MA; ²Department of Cancer Medicine, Institut Gustave Roussy, Villejuif, France; ³Poznan University of Medical Sciences, Poznan, Poland; ⁴Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; ⁵Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; ⁶Medical Oncology Department, University Hospital '12 de Octubre,' Madrid, Spain; ⁷Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL; ⁸Department of Medical Oncology, Fondazione Istituto Nazionale dei Tumori di Milano, Milan, Italy; ⁹Department of Medical Oncology, Jean Perrin Cancer Center, Clermont-Ferrand, France; ¹⁰Department of Urology and Paediatric Urology, University Hospital Ulm, Ulm, Germany; ¹¹Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; ¹²Genentech, South San Francisco, CA; ¹³F. Hoffmann-La Roche, Ltd, Basel, Switzerland; ¹⁴Roche Product Ltd, Welwyn Garden City, UK; ¹⁵Exelixis, Inc, Alameda, CA; ¹⁶Barts Cancer Institute, ECMC, QMUL, London, United Kingdom; ¹⁷Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA

2023 ASCO #ASCO23

PRESENTED BY: Toni K. Choueiri, MD Presentation is property of the author and ASCO. Permission required for reuse: contact permissions@asco.org Choueiri, et al. CONTACT-03 (LBA4500) Choueiri

Phase III CONTACT-03 study

Key eligibility criteria

- Advanced/metastatic clear cell or non-clear cell^a RCC with or without a sarcomatoid component
- Radiographic progression on or after prior ICI treatment
 - ICI as adjuvant, 1L or 2L (single agent or in combination with another permitted agent)
 - ICI in the immediately preceding line of therapy

Stratification factors

IMDC risk group

0 vs 1-2 vs ≥3

Histology

Dominant clear cell without sarcomatoid vs dominant non-clear cell without sarcomatoid vs any sarcomatoid^b

- Most recent line of ICI
 - Adjuvant vs 1L vs 2L

#ASCO23

Cabozantinib 60 mg daily PO

Primary endpoints

- Independent centrally-assessed PFS^c
- 0S

Key secondary endpoints

- Investigator-assessed PFS^c
- ORR (per central review and per investigator)c
- Duration of response (per central review and per investigator)^c
- Safety

ClinicalTrials.gov ID, NCT04338269. IMDC, International Metastatic RCC Database Consortium. Patients were enrolled between July 28, 2020 and December 27, 2021. ^a Papillary, chromophobe or unclassified (chromophobe requires sarcomatoid differentiation). ^b Clear cell or non-clear cell. ^c Assessed according to RECIST 1.1.

presented by: Toni K. Choueiri, MD

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

Choueiri, et al. CONTACT-03 (LBA4500)

3

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

R

1:1

N=522

Most common prior systemic cancer treatment

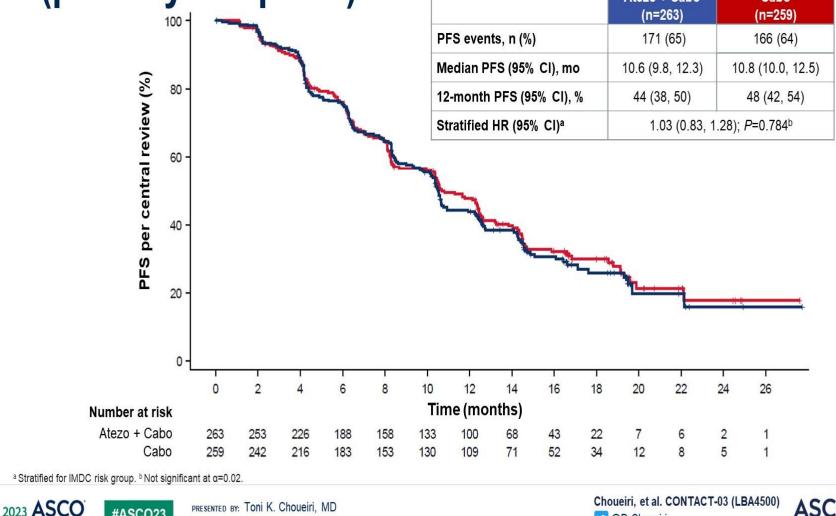
	Atezo + Cabo (n=263)	Cabo (n=259)
First-line treatment, n (%) ^{a,b}	262 (99.6)	258 (99.6)
Ipilimumab + nivolumab	80 (30.5)	70 (27.1)
Sunitinib	77 (29.4)	72 (27.9)
Pazopanib	36 (13.7)	43 (16.6)
Axitinib + pembrolizumab	36 (13.7)	28 (10.9)
Nivolumab	6 (2.3)	10 (3.9)
Avelumab + axitinib	7 (2.7)	6 (2.3)
Bempegaldesleukin + nivolumab	3 (1.1)	9 (3.5)
Lenvatinib + pembrolizumab	6 (2.3)	3 (1.2)
Sorafenib	3 (1.1)	1 (0.4)
Second-line treatment, n (%) ^{a,b}	119 (45.2)	125 (48.3)
Nivolumab	104 (87.4)	116 (92.8)
lpilimumab + nivolumab	4 (3.4)	3 (2.4)
Axitinib + pembrolizumab	2 (1.7)	3 (2.4)
Adjuvant treatment, n (%) ^{a,b}	8 (3.0)	4 (1.5)
Sunitinib	2 (25)	2 (50)

Percentages for each regimen were calculated based on the total number of patients receiving the corresponding line of therapy.

^a Treatments were mutually exclusive within each line of therapy, and patients could have received agents for >1 line of treatment. ^b Only regimens received by ≥4 patients are shown.

#ASCO23

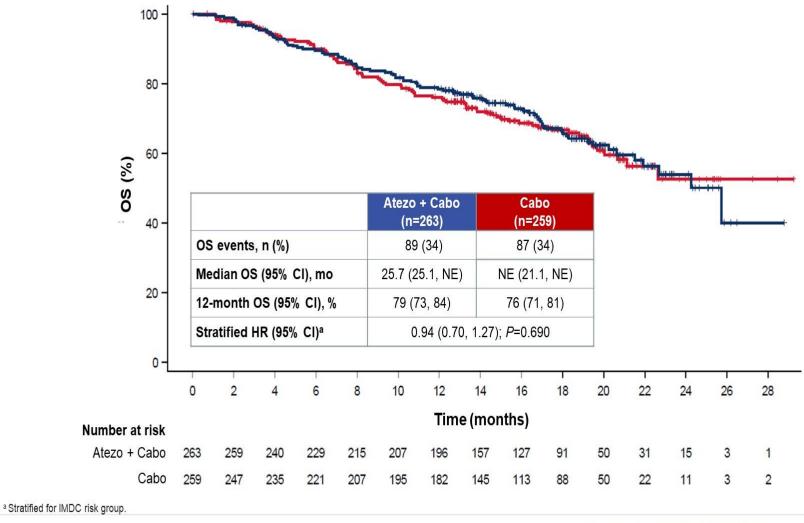
PRESENTED BY: Toni K. Choueiri, MD


Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

Choueiri, et al. CONTACT-03 (LBA4500) Choueiri

5

Primary analysis of centrally reviewed PFS (primary endpoint) Atezo + Cabo Cabo



💟 @DrChoueiri

Interim analysis of OS (primary endpoint)

PRESENTED BY: TONI K. Choueiri, MD

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

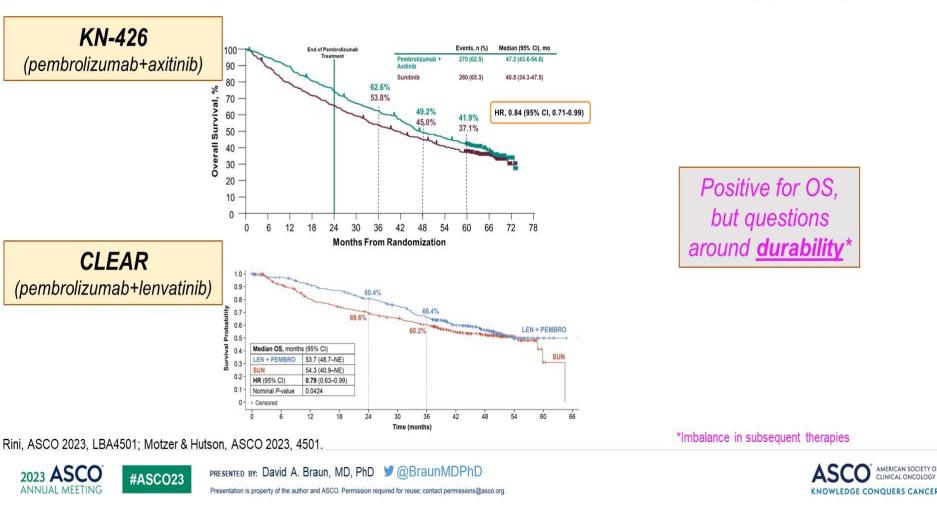
Choueiri, et al. CONTACT-03 (LBA4500) Choueiri

Safety summary

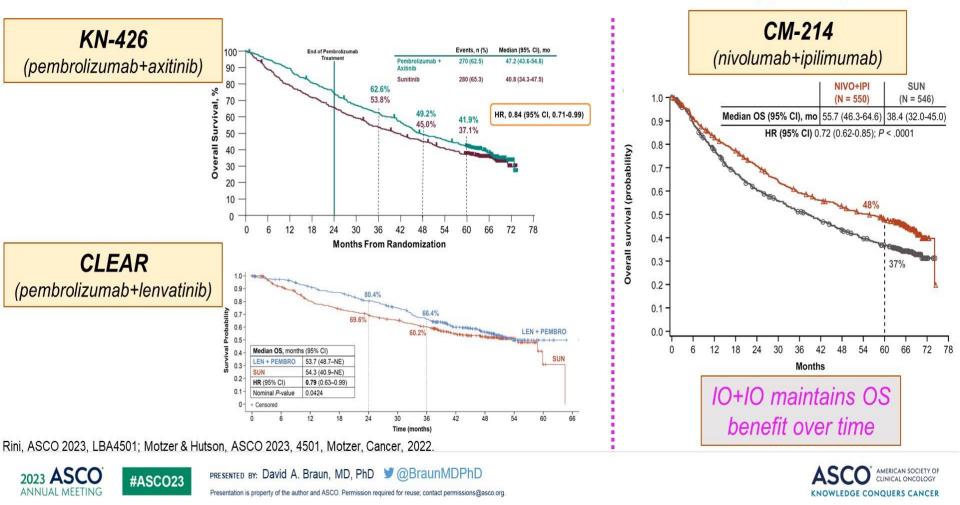
2023 ASCO

#ASCO23

Adverse event, n (%)	Atezo + Cabo (n=262)	Cabo (n=256)
Any-cause AE	262 (100)	254 (99.2)
Any-cause treatment-related AE	252 (96.2)	249 (97.3)
Grade 3 or 4 AE	177 (67.6)	158 (61.7)
Grade 3 or 4 treatment-related AE	145 (55.3)	121 (47.3)
Death due to AE	17 (6.5)	9 (3.5)
Death due to treatment-related AE	3 (1.1)ª	0
Serious AE	126 (48.1)	84 (32.8)
Serious treatment-related AE	63 (24.0)	30 (11.7)
AE leading to withdrawal from a trial drug	41 (15.6)	10 (3.9)
AE leading to withdrawal from atezo	29 (11.1)	-
AE leading to withdrawal from cabo	25 (9.5)	10 (3.9)
AE leading to interruption or reduction of a trial drug	240 (91.6)	223 (87.1)
AE leading to interruption of atezob	159 (60.7)	<u>1</u>
AE leading to interruption or reduction of cabo	234 (89.3)	223 (87.1)


^a Treatment-related AEs leading to death were immune-mediated enterocolitis and renal failure (both related to atezo) and intestinal perforation (related to cabo). ^b Dose reduction of atezo was not permitted.

PRESENTED BY: TONI K. Choueiri, MD Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org. Choueiri, et al. CONTACT-03 (LBA4500)

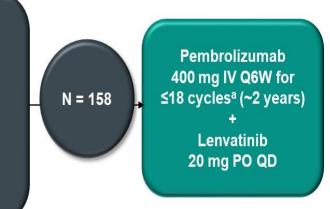


11

Is IO+TKI superior to TKI alone for front-line ccRCC treatment? Yes (**^OS**)

Is IO+TKI superior to TKI alone for front-line ccRCC treatment? Yes (**^OS**)

First-Line Lenvatinib Plus Pembrolizumab Treatment Across Non–Clear Cell Renal Cell Carcinomas: Results of the Phase 2 KEYNOTE-B61 Study


Chung-Han Lee¹; Howard Gurney²; Vagif Atduev³; Cristina Suarez⁴; Miguel A. Climent⁵; David Pook⁶; Piotr Tomczak⁷; Philippe Barthelemy⁸; Jae Lyun Lee⁹; Taron Nalbandian¹⁰; Viktor Stus¹¹; Thomas Ferguson¹²; Pawel Wiechno¹³; Erhan Gokmen¹⁴; Louis Lacombe¹⁵; Craig Gedye¹⁶; Joseph E. Burgents¹⁷; Manish Sharma¹⁷; Xiang Peng¹⁷; Laurence Albiges¹⁸

¹Memorial Sloan Kettering Cancer Center, New York, NY, USA; ²Macquarie University, Sydney, NSW, Australia; ³Volga District Medical Center, Federal Medical-Biological Agency, Nizhny Novgorod, Russia; ⁴Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; ⁵Instituto Valenciano de Oncología, València, Spain; ⁶Monash Health, Melbourne, VIC, Australia; ⁷Poznan University of Medical Sciences, Poznan, Poland; ⁸Institut de Cancérologie Strasbourg Europe, Strasbourg, France; ⁹Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; ¹⁰Regional Cancer Center, Kharkiv, Ukraine; ¹¹Dnipro State Medical University, Dnipro, Ukraine; ¹²Fiona Stanley Hospital, Perth, WA, Australia; ¹³Oncology Center-Institute Marii Sklodowskiej-Curie, Warszawa, Poland; ¹⁴Ege University Medical Faculty, Izmir, Turkey; ¹⁵Centre de Recherche du CHU de Québec, Québec City, QC, Canada; ¹⁶University of Newcastle, Callaghan, NSW, Australia; ¹⁷Merck & Co., Inc., Rahway, NJ, USA; ¹⁸Gustave Roussy, Villejuif, France

Background/Study Design of KEYNOTE-B61

Tumor Assessments

 12 weeks from allocation, then Q6W for 54 weeks, then Q12W thereafter

End Points

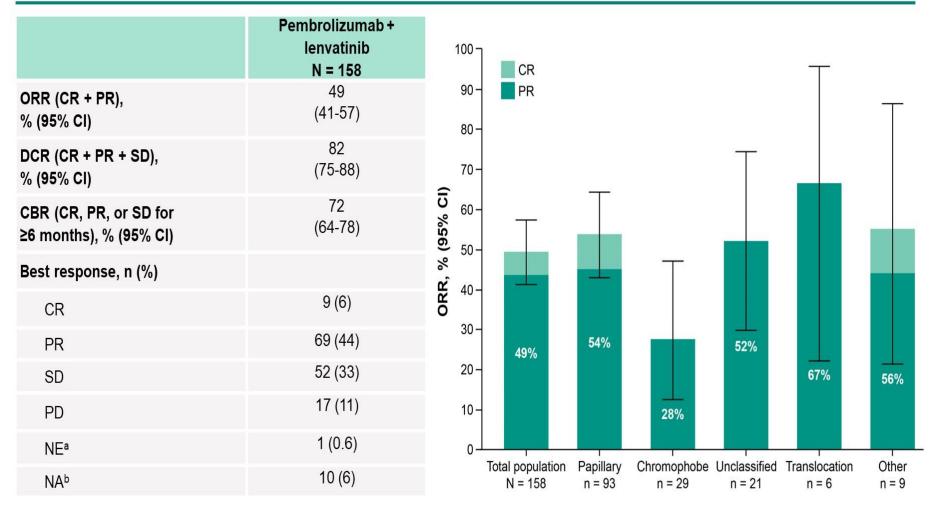
- Primary: ORR per RECIST v1.1 by BICR
- Secondary: CBR, DCR, DOR, and PFS per RECIST v1.1 by BICR; OS; safety and tolerability

BICR, blinded independent central review; CBR, clinical benefit rate; DCR, disease control rate; DOR, duration of response; IV, intravenously; KPS, Karnofsky Performance Status score; nccRCC, non-clear cell renal cell carcinoma; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PO, orally; Q6W, every 6 weeks; Q12W, every 12 weeks; QD, every day; RCC, renal cell carcinoma. 1. Motzer R et al. N Engl J Med. 2021;384:1289-1300. 2. Escudier B et al. Ann Oncol. 2019;30:706-720. 3. Hsieh JJ et al. Nat Rev Dis Primers. 2017;3:17009. 4. Albiges L et al. Ann Oncol. 2022;suppl 7:S660-680.

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

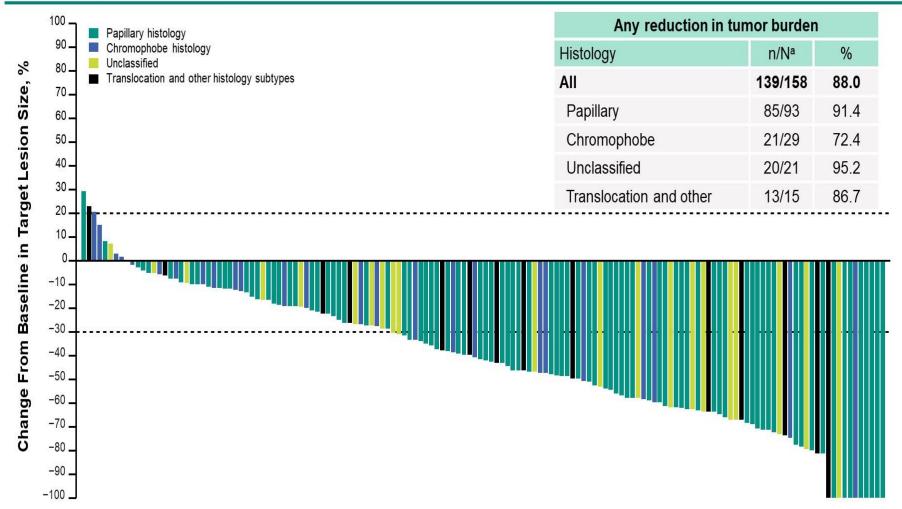
- Immunotherapy-based combinations including pembrolizumab plus lenvatinib are standard of care for first-line clear cell RCC,¹ however these combinations are not well characterized in non-clear cell RCC
- Non–clear cell RCC is a heterogenous group of aggressive tumors with limited treatment options^{2,3}
- Pembrolizumab plus lenvatinib showed antitumor activity in patients with advanced non-clear cell RCC who had opportunity for at least 24 weeks of follow-up (n = 82) in the initial analysis of the single-arm, phase 2 KEYNOTE-B61 (NCT04704219) study⁴

Key Eligibility Criteria

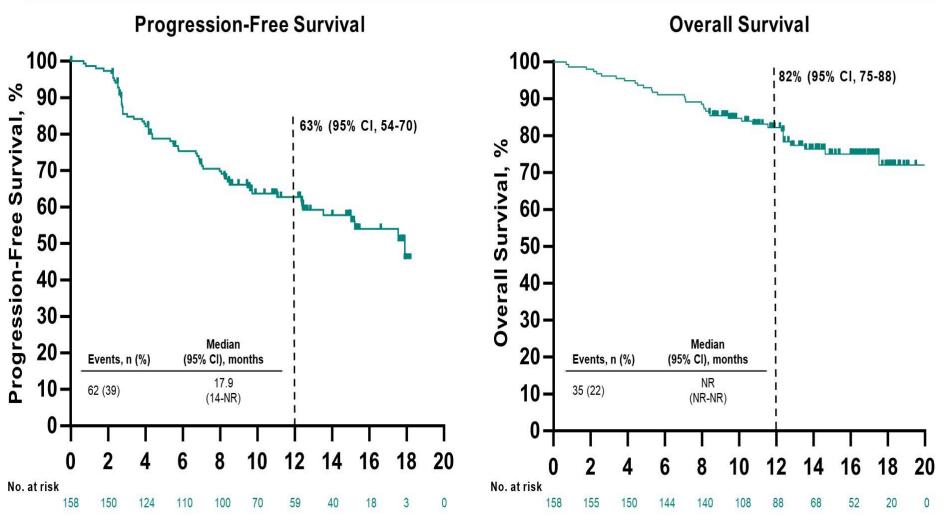

- Histologically confirmed diagnosis of nccRCC (per investigator)
- · Locally advanced/metastatic disease
- No prior systemic therapy
- Measurable disease per RECIST v1.1
- KPS ≥70%

Baseline Characteristics

	Pembrolizumab + lenvatinib
	N = 158
Age, median (range)	60.0 (24-87)
Histology	
Papillary	93 (58.8)
Chromophobe	29 (18.4)
Unclassified	21 (13.3)
Translocation	6 (3.8)
Other	9 (5.7)
Presence of sarcomatoid features ^a	
Yes	19 (12.0)
No	96 (60.8)
Unknown	43 (27.2)
Site of metastases at screening	
Lymph node	102 (64.6)
Lung	54 (34.2)
Bone	49 (31.0)
Liver	31 (19.6)
Abdominal cavity	20 (12.7)
IMDC risk category	
Favorable	70 (44.3)
Intermediate/poor	88 (55.7)
PD-L1 status ^b	
CPS <1	50 (31.6)
CPS ≥1	93 (58.9)
Unknown	15 (9.5)


CPS, combined positive score; IMDC, International Metastatic Renal Cell Carcinoma Database Consortium. Data are n (%) unless otherwise specified. *As determined by investigator review. *CPS was calculated as the number of PD-L1-staining cells (tumor cells, lymphocytes, macrophages) divided by the total number of viable tumor cells, multiplied by 100. Data cutoff date: November 7, 2022.

Best Confirmed Objective Response by Histology per RECIST v1.1 by Blinded Independent Central Review


CR, complete response; NA, not applicable; NE, not evaluable; PD, progressive disease; PR, partial response; SD, stable disease. aPost-baseline assessment available but not evaluable. bNo post-baseline assessment available. Data cutoff date: November 7, 2022.

Best Percentage Change From Baseline in Target Lesion Size by Histology

a148 patients had a baseline and ≥1 postbaseline assessment. Data cutoff date: November 7, 2022.

Progression-Free Survival per RECIST v1.1 and Overall Survival

Data cutoff date: November 7, 2022.

- 1. Prostatakarzinom
- 2. Nierenzellkarzinom
- 3. Urothelkarzinom

Phase 3 THOR Study: Results of Erdafitinib Versus Chemotherapy in Patients With Advanced or Metastatic Urothelial Cancer With Select Fibroblast Growth Factor Receptor Alterations

<u>Yohann Loriot</u>¹, Nobuaki Matsubara², Se Hoon Park³, Robert A. Huddart⁴, Earle F. Burgess⁵, Nadine Houede⁶, Severine Banek⁷, Brigitte Laguerre⁸, Valentina Guadalupi⁹, Ja Hyeon Ku¹⁰, Spyros Triantos¹¹, Sydney Akapame¹¹, Kris Deprince¹², Sutapa Mukhopadhyay¹³, Arlene O Siefker-Radtke¹⁴

¹Department of Cancer Medicine, INSERM U981, Gustave Roussy, Université Paris-Saclay, Villejuif, France; ²Department of Medical Oncology, National Cancer Center Hospital East, Chiba, Japan; ³Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; ⁴Section of Radiotherapy and Imaging, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, UK; ⁵Medical Oncology Department, Levine Cancer Institute, Charlotte, NC; ⁶Medical Oncology Department, Institut de Cancérologie du Gard - CHU Caremeau, Nîmes, France and Montpellier University, Montpellier, France; ⁷Department of Urology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany; ⁸Department of Medical Oncology, Centre Eugene Marquis, Rennes, France; ⁹Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy; ¹⁰Seoul National University Hospital, Seoul, South Korea; ¹¹Janssen Research & Development, Spring House, PA; ¹²Janssen Research & Development, Beerse, Belgium; ¹³Janssen Research & Development, Lexington, MA; ¹⁴Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX

Presented at the 2023 ASCO Annual Meeting; June 2-6, 2023; Chicago, IL, USA.

https://www.congresshub.com/Oncology/ AM2023/erdafitinib/Loriot

Copies of this slide deck obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASCO[®] or the authors of these slides.

Unmet Need for Post-Checkpoint Inhibitor Therapies in the Metastatic Urothelial Carcinoma Population

First-Line Systemic Therapy

Platinum-eligible population¹

Platinum-based chemotherapy +/- maintenance avelumab

Cisplatin-ineligible/platinum-ineligible population^{1,2}

- Anti-PD-(L)1 where approved
- Pembrolizumab ± enfortumab vedotin where approved

Second-Line Systemic Therapy

Checkpoint inhibitor-naive population^{1,2}

• Anti-PD-(L)1 where approved

Prior checkpoint inhibitor population^{1,3}

- Single-agent chemotherapy (taxanes, vinflunine)
- Enfortumab vedotin, sacituzumab govitecan, and erdafitinib where approved

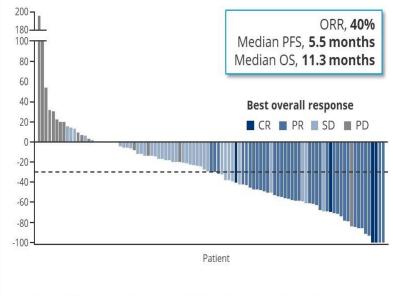
Post-Checkpoint Inhibitors

- Checkpoint inhibitors are used in both the first- and second-line settings^{1,2}
- ~30% of patients with mUC respond to immune checkpoint inhibitors⁴
- Treatment options after progression on PD-(L)1 inhibitors are limited^{1,3}
- In the real-world setting, only ~30% of patients received subsequent anticancer treatment after anti-PD-(L)1 discontinuation⁵
- No large, randomized studies have demonstrated survival benefit in biomarker-selected populations after anti-PD-(L)1 treatment

FGFR, fibroblast growth factor receptor; mUC, metastatic urothelial carcinoma; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1.

1. National Comprehensive Cancer Network. Available at: https://www.nccn.org/professionals/physician_gls/pdf/bladder.pdf. Accessed April 20, 2023. 2. Rhea LP, et al. *Clin Med Insights Oncol*. 2021;15:11795549211044963; 3. Bellmunt J, et al. *J Clin Oncol*. 2009;27:4454-4461; 4. Lopez-Beltran A, et al. *Cancers (Basel)*. 2021;13:131; 5. Morgans AK, et al. *Clin Genitourin Cancer*. 2022;20:543–552.

Erdafitinib is a Pan-FGFR Inhibitor With Activity in Metastatic Urothelial Carcinoma


 FGFRalt are observed in ~20% of advanced or mUC and may function as oncogenic drivers^{1,2}

Erdafitinib is an oral selective pan-FGFR tyrosine kinase inhibitor³

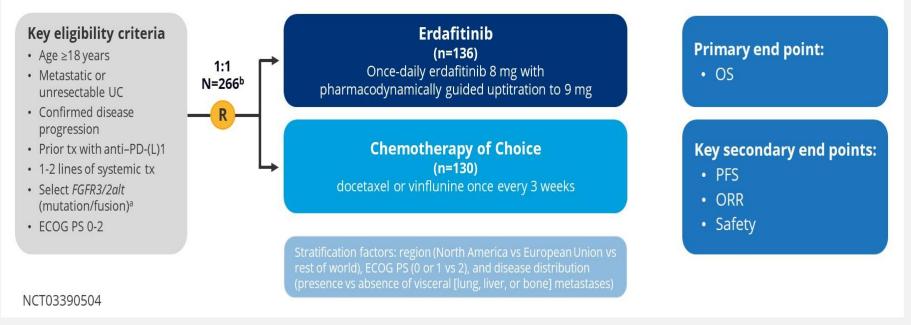
- Erdafitinib was granted accelerated approval in the United States and is approved in 17 other countries to treat locally advanced or mUC in adults with susceptible *FGFR3/2alt* who have progressed after platinum-containing chemotherapy⁴⁻⁶
- THOR is a confirmatory, randomized phase 3 study:
 - Cohort 1 assessed whether erdafitinib improved survival over chemotherapy in patients with *FGFRalt* mUC who progressed on or after ≥1 prior treatment that included anti–PD-(L)1

In the single-arm phase 2 BLC2001 trial, erdafitinib showed a benefit in patients with *FGFR-altered* advanced urothelial cancer⁴

Patients received erdafitinib 8 mg/d with pharmacodynamically guided uptitration to 9 mg/d.

FGFR, fibroblast growth factor receptor; FGFRalt, FGFR alterations; mUC, metastatic urothelial carcinoma; ORR, overall response rate; OS, overall survival; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; PFS, progression-free survival.

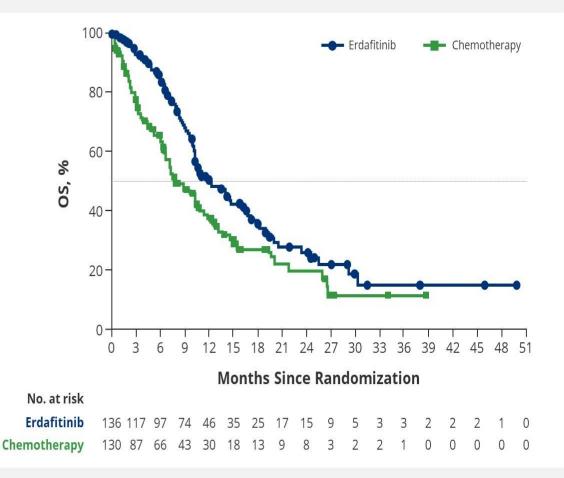
^aPatients received erdafitinib 8 mg/d with pharmacodynamically guided uptitration to 9 mg/d.


1. Necchi A, et al. Eur Urol Focus. 2019;5:853-586; 2. di Martino É, et al. Future Oncol. 2016;12:2243-2263; 3. Perera TPS, et al. Mol Cancer Ther. 2017;16:1010-1020; 4. Loriot Y, et al. N Engl J Med. 2019;381:338-348;

5. BALVERSA® (erdafitinib) [package insert]. Horsham, PA: Janssen Products, LP; 2023; 6. Siefker-Radtke AO, et al. Lancet Oncol. 2022;23:248-258.

Phase 3 THOR Study: Erdafitinib Versus Chemotherapy of Choice in Patients With Advanced Urothelial Cancer and Selected FGFR Aberrations

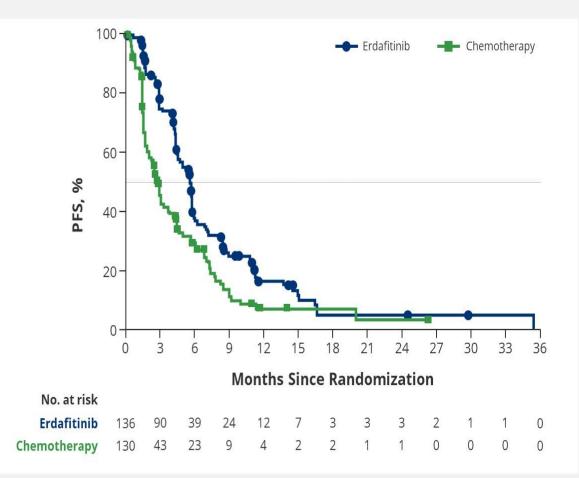
Cohort 1


^aMolecular eligibility can be confirmed using either central or local historical *FGFR* test results (Qiagen assay). If a patient was enrolled based on local historical testing, a tissue sample must still be submitted at the time of enrollment for retrospective confirmation (by central lab) of *FGFR* status. Tumors must have ≥1 of the following translocations: *FGFR2-BICC1*, *FGFR2-CASP7*, *FGFR3-TACC3_V1*, *FGFR3-TACC3_V3*, *FGFR3-BAIAP2L1*; or 1 of the following *FGFR3* gene mutations: R248C, S249C, G370C, Y373C.

^bNumber of patients randomized at the time of the interim analysis (data cutoff January 15, 2023).

ECOG PS, Eastern Cooperative Oncology Group performance status; FGFR, fibroblast growth factor receptor; FGFR3/2alt, FGFR3/2 alterations; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; Q3W, every 3 weeks; tx, treatment; UC, urothelial cancer.

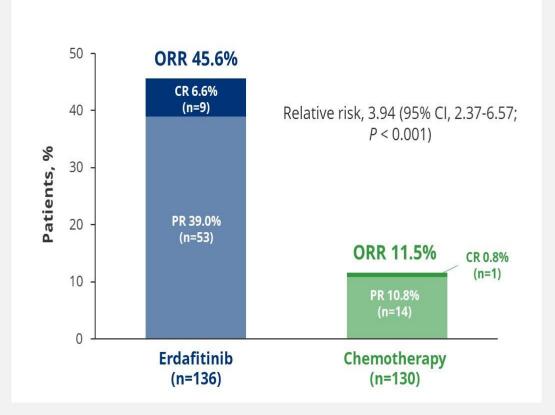
Overall Survival for Erdafitinib Was Superior to Investigator's Choice of Chemotherapy


Median follow-up was 15.9 months

- Median OS was 12.1 months for erdafitinib versus 7.8 months for chemotherapy
- Erdafitinib reduced the risk of death by 36% versus chemotherapy
 - HR, 0.64 (95% Cl, 0.47-0.88; P = 0.005)^a
- Based on these interim analysis results, the IDMC recommended to stop the study, unblind data, and cross over patients from chemotherapy to erdafitinib

CI, confidence interval; HR, hazard ratio; IDMC, independent data monitoring committee; OS, overall survival. ^aThe significance level for stopping for efficacy was p=0.019, corresponding to a HR of 0.69.

Erdafitinib Significantly Improved Progression-Free Survival Versus Chemotherapy



- Median PFS was 5.6 versus 2.7 months for erdafitinib versus chemotherapy
- Erdafitinib reduced the risk of progression or death by 42% versus chemotherapy
 - HR, 0.58 (95% CI, 0.44-0.78; P = 0.0002)

CI, confidence interval; HR, hazard ratio; PFS, progression-free survival.

Objective Response Rate Was Significantly Higher for Erdafitinib Versus Chemotherapy^a

CI, confidence interval; CR, complete response; ORR, objective response rate; PR, partial response. ^aResponses were best overall response per investigator assessment.

The Safety Profiles Were Consistent With the Known Profiles of Erdafitinib and Chemotherapy (1/2)

Patients with AEs,	Erdafitinib (n=135)			
n (%)ª	Any grade	Grade 3-4		
≥1 treatment-related AE	131 (97.0)	62 (45.9)		
Hyperphosphatemia	106 (78.5)	7 (5.2)		
Diarrhea	74 (54.8)	4 (3.0)		
Stomatitis	62 (45.9)	11 (8.1)		
Dry mouth	52 (38.5)	0		
PPE syndrome	41 (30.4)	13 (9.6)		
Onycholysis	31 (23.0)	8 (5.9)		
Patients who discontinued study treatment, n (%)				
Discontinuation due to treatment-related AEs	11 (8.1%) ^b			

• In the erdafitinib group:

- 18 patients (13.3%) had treatmentrelated serious AEs
- 1 treatment-related death occurred^c
- AEs with erdafitinib were mostly manageable with dose modifications and supportive care

In the chemotherapy group:

- 27 patients (24.1%) had treatmentrelated serious AEs
- 6 treatment-related deaths occurred^d

Patients with AEs,	Chemotherapy (n=112)			
n (%) ^e	Any grade	Grade 3-4		
≥1 treatment-related AE	97 (86.6)	52 (46.4)		
Anemia	31 (27.7)	7 (6.3)		
Alopecia	24 (21.4)	0		
Nausea	22 (19.6)	2 (1.8)		
Neutropenia	21 (18.8)	15 (13.4)		
Leukopenia	13 (11.6)	9 (8.0)		
Febrile neutropenia	9 (8.0)	10 (8.9)		
Patients who discontinued study treatment, n (%)				
Discontinuation due to treatment-related AEs	15 (13.4) ^f			

aAEs by preferred term are listed if events of any grade occurred in ≥30% of patients in the erdafitinib group or if events of grade 3-4 occurred in ≥5% of patients.

^bMost frequent treatment-related AEs leading to discontinuation of erdafitinib included eye disorders (3 patients) and skin and subcutaneous disorders (3 patients).

CTreatment-related AE leading to death was reported as sudden death.

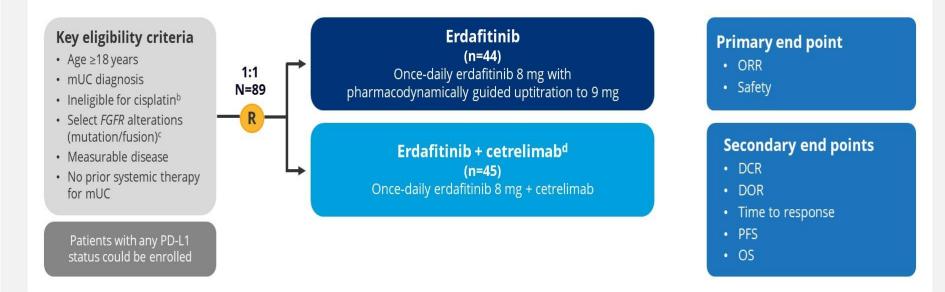
^aTreatment-related AEs leading to death in the chemotherapy arm included febrile bone marrow aplasia (2 patients), febrile neutropenia (1 patient), septic shock (2 patients), and atypical pneumonia (1 patient). ^eAEs by preferred term are listed if events of any grade occurred in ≥20% of patients in the chemotherapy group or if events of grade 3-4 occurred in ≥5% of patients.

Most frequent treatment-related AEs leading to discontinuation of chemotherapy included blood and lymphatic system disorders (5 patients) and infections and infestations (3 patients). AE, adverse event; PPE, palmar-plantar erythrodysesthesia.

Erdafitinib Versus Erdafitinib Plus Cetrelimab for Patients With Metastatic Urothelial Carcinoma and Fibroblast Growth Factor Receptor Alterations: Final Results From the Phase 2 NORSE Study

<u>Arlene Siefker-Radtke</u>¹, Tom Powles², Victor Moreno³, Taek Won Kang⁴, Irfan Cicin⁵, Angela Girvin⁶, Sydney Akapame⁶, Spyros Triantos⁶, Anne O'Hagan⁶, Wei Zhu⁷, Meggan Tammaro⁶, Yohann Loriot⁸

¹The University of Texas MD Anderson Cancer Center, Houston, TX; ²Barts Cancer Institute, Experimental Cancer Medicine Centre, Queen Mary University of London, St. Bartholomew's Hospital, London, UK; ³START Madrid-FJD, Fundación Jiménez Díaz, University Hospital, Madrid, Spain; ⁴Department of Urology, Chonnam National University Medical School, Gwangju, Republic of Korea; ⁵Department of Medical Oncology, Trakya University Faculty of Medicine, Edirne, Turkey; ⁶Janssen Research & Development, Spring House, PA; ⁷Janssen Research & Development, Raritan, NJ; ⁸Institut Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, Villejuif, France


Presented at the 2023 ASCO Annual Meeting; June 2-6, 2023; Chicago, IL, USA.

https://www.congresshub.com/Oncology/ AM2023/erdafitinib/Radtke

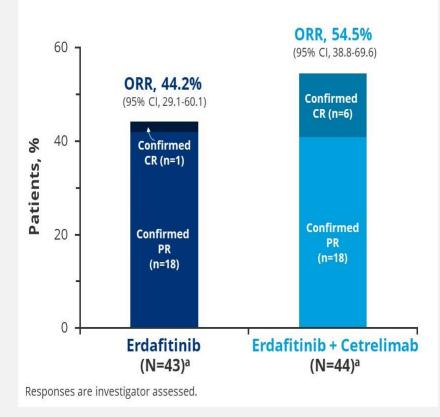
Copies of this slide deck obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASCO[®] or the authors of these slides.

NORSE Phase 2 Study Design^a

- Molecular eligibility was determined by central or local testing; a total of 1430 patients underwent central molecular screening^c
- No formal statistical comparisons between arms were prespecified

^aData cutoff was December 19, 2022.

^bCisplatin-ineligible patients were defined as meeting ≥1 of the following criteria: (1) impaired renal function defined as calculated by Cockcroft-Gault (≥30 to <60 mL/min), (2) Grade ≥2 peripheral neuropathy, (3) Grade ≥2 hearing loss, or (4) ECOG Performance Status 2.

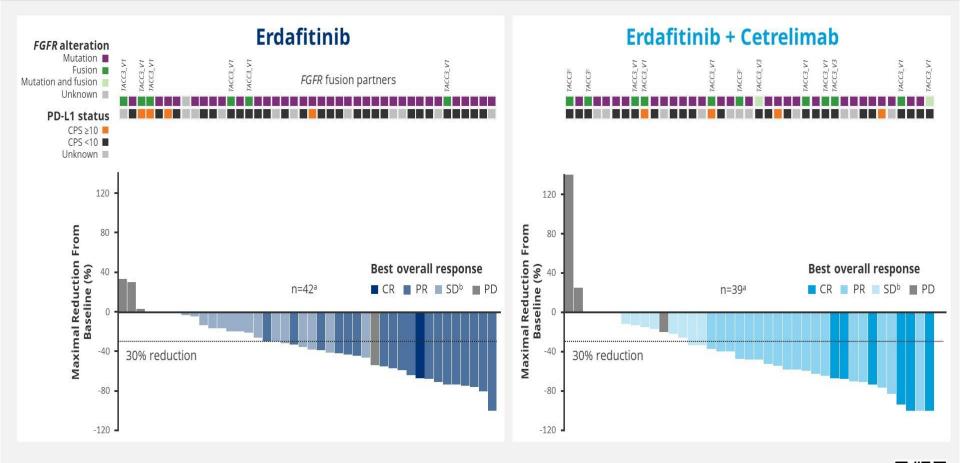

*Central or local FGFR testing. Local test reports were submitted for central verification, and archival tumor tissue and blood samples were submitted for retrospective confirmation of FGFR status (retrospective central confirmation did not affect the patient's study eligibility). Central testing was based on archival or fresh biopsy tumor tissue.

⁴6 patients in the erdafitinib plus cetrelimab group were uptitrated before uptitration was discontinued in the erdafitinib plus cetrelimab group following protocol amendment 3.

DCR, disease control rate; DOR, duration of response; ECOG, Eastern Cooperative Oncology Group; FGFR, fibroblast growth factor receptor; mUC, locally advanced or metastatic urothelial carcinoma; ORR, overall response rate; OS, overall survival; PD-L1, programmed death-ligand 1; PFS, progression-free survival; R, randomization.

ORR of 44% and 55% Was Observed With Erdafitinib and Erdafitinib + Cetrelimab, Respectively

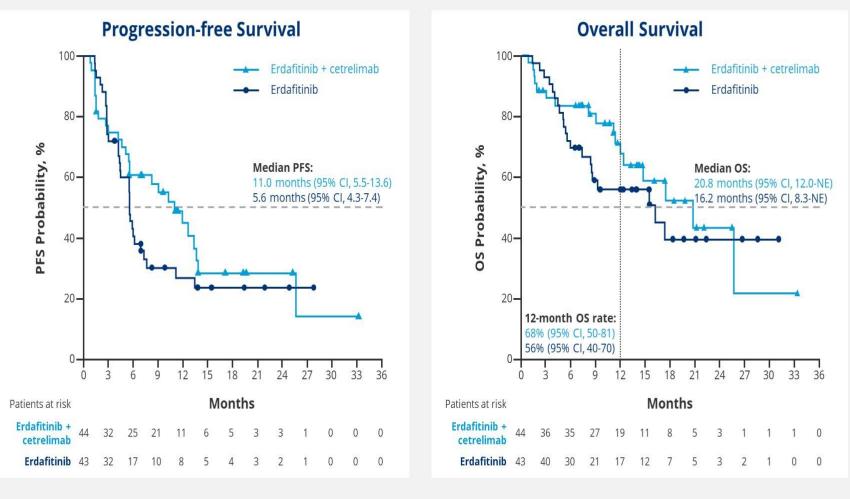
- ORR with erdafitinib monotherapy was consistent with previous results in *FGFR*-altered mUC, and responses were durable
- ORR >50% was observed with combination therapy, with a durable DOR
 - For patients with CR in the combination arm (n=6), median DOR has not been reached
- In patients with CPS <10, ORR was 46.4% in monotherapy and 50.0% in combination arm
 - Data are limited in patients with PD-L1 high status (CPS \geq 10)


	Erdafitinib (N=43)	Erdafitinib + Cetrelimab (N=44)
DCR, median (95% Cl), %	88.4 (74.9-96.1)	79.5 (64.7-90.2)
DOR, median (95% Cl), months	9.72 (4.6-NE)	11.10 (8.8-NE)

^a1 patient in the erdafitinib group and 5 patients in the erdafitinib plus cetrelimab group were inevaluable.

CI, confidence interval; CR, complete response; DCR, disease control rate; DOR, duration of response; mUC, locally advanced or metastatic urothelial carcinoma; NE, not evaluable; ORR, objective response rate; PR, partial response.

Erdafitinib Alone and in Combination With Cetrelimab Showed Responses in the Cisplatin-Ineligible Population


^a1 patient in the erdafitinib group and 5 patients in the erdafitinib plus cetrelimab group were inevaluable.

^bFor a response to qualify as SD, follow-up measurements must have met the stable disease criteria at least once at a minimum interval <6 weeks after the first dose of study agent.

FGFR-TACC fusion was detected by local testing or central blood sample, but not confirmed by central tissue testing.

CPS, combined positive score; CR, complete response; FGFR, fibroblast growth factor receptor; PD, disease progression; PR, partial response; SD, stable disease.

PFS and OS Underscore Durable Responses to the Erdafitinib + Cetrelimab Combination (Median Follow-up 14 Months)

CI, confidence interval; NE, not evaluable; OS, overall survival; PFS, progression-free survival.

MULTICENTER RANDOMIZED PHASE III OF DOSE DENSE MVAC OR GC AS PERIOPERATIVE CHEMOTHERAPY FOR MUSCLE INVASIVE BLADDER CANCER

Overall Survival at 5 years in the GETUG/AFU V05 VESPER trial

Ch Pfister, G Gravis, A Flechon, C Chevreau, H Mahammedi, B Laguerre, A Guillot,

F Joly, Y Allory, V Harter and S Culine for the Vesper trial investigators

2023 ASCO #ASCO23

PRESENTED BY: C Pfister - 5-y OS Vesper Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

Trial design (1)

Chemotherapy

A cycles of GC Gemcitabine 1250 mg/m² d1 and d8 Cisplatin 70 mg/m² d1 cycles of GC Gemcitabine 1250 mg/m² d1 and d8

6 cycles of ddMVAC

Methotrexate 30 mg/m² d1 Vinblastine 3 mg/m² d2 Doxorubicin 30 mg/m² d2 Cisplatin 70 mg/m² d2

+ G-CSF support from d3 to d9

every 2 weeks

ASCO #ASCO23

PRESENTED BY: C Pfister - 5-y OS Vesper Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

Trial design (2)

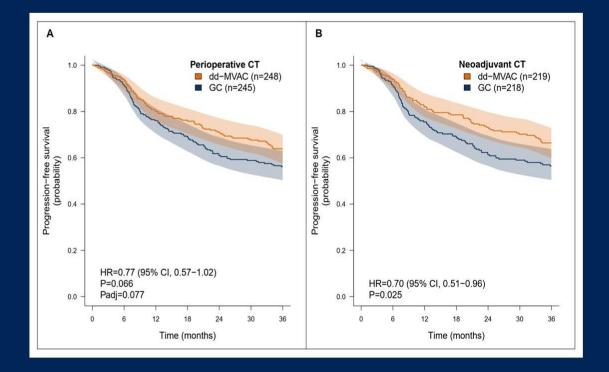
Inclusion criteria

➢ Pure or mixed urothelial bladder cancer (neuroendocrine excluded)
➢ ECOG PS < 2 and all criteria for cisplatin eligibility
➢ Written informed consent

 AND

 ➢ T2, N0 (LN ≤ 10 mm on CT scan), M0 (Neoadjuvant CT)

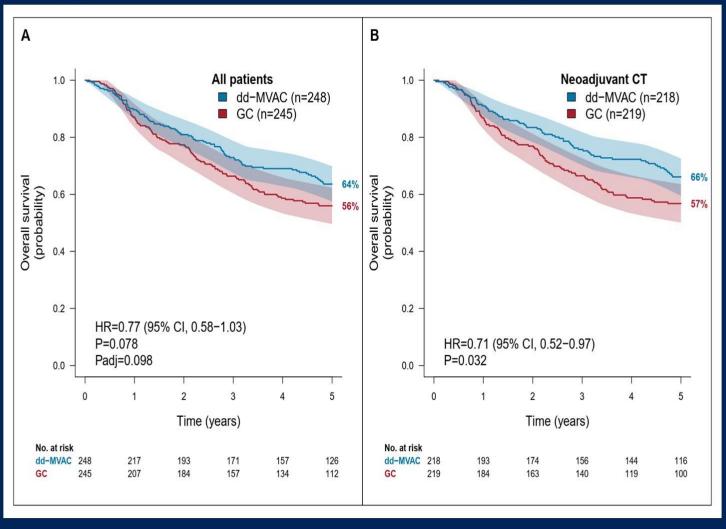
➢ pT2 or pN+ and M0 (Adjuvant CT)


#ASCO23

PRESENTED BY: C Pfister - 5-y OS Vesper Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

PFS at 3 years

Perioperative dd-MVAC improve 3-y PFS over GC


In the neoadjuvant group, better bladder tumor local control with a significant improvement on 3-y PFS in the dd-MVAC arm

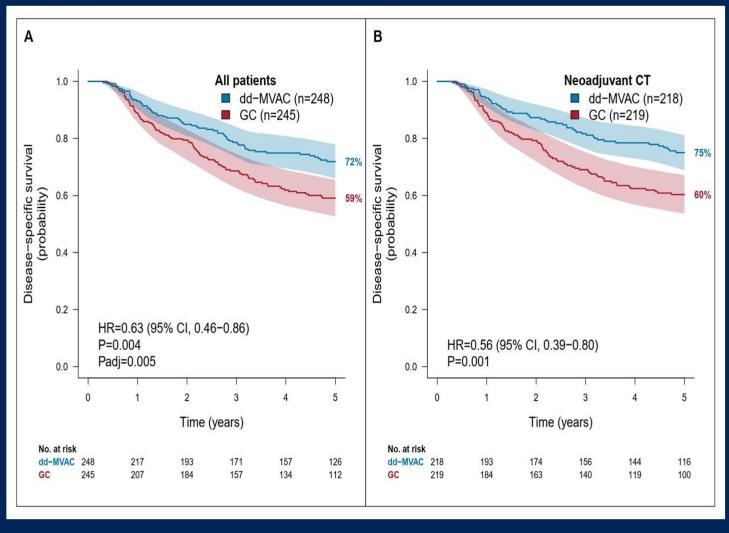
Pfister et al. J Clin Oncol 2022

2023 ASCO ANNUAL MEETING #ASCO23 #RESENTED BY: C Pfister - 5-y OS Vesper Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

Results (1) Overall Survival at 5 years

2023 ASCO ANNUAL MEETING

#ASCO23


PRESENTED BY: C Pfister - 5-y OS Vesper

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

Results (2)

Disease-specific Survival

#ASCO23

PRESENTED BY: C Pfister - 5-y OS Vesper

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

Results (3)

Causes of Death

	GC	dd-MVAC
Bladder cancer progression	94	63
Toxic death	1	3
Cardiovascular event	3	5
Second cancer	2	2
Intercurrent disease	2	7
Unknown cause of death without relapse	1	5
Other undocumented death	1	1

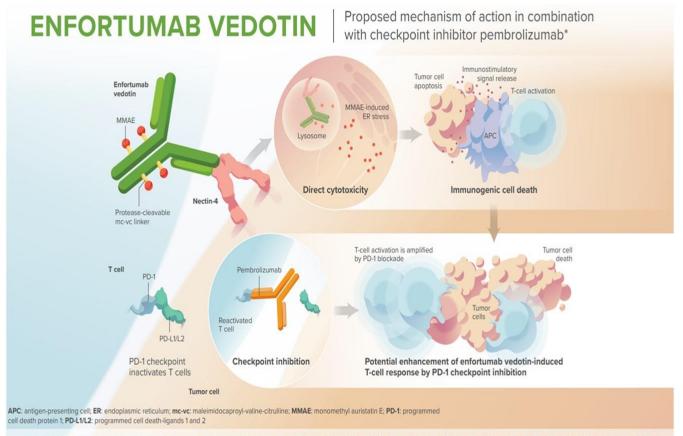
2023 ASCO #ASCO23

PRESENTED BY: C Pfister - 5-y OS Vesper Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

12

Study EV-103 Dose Escalation/Cohort A: Long-term Outcome of Enfortumab Vedotin + Pembrolizumab in First-line (1L) Cisplatin-ineligible Locally Advanced or Metastatic Urothelial Carcinoma (la/mUC) with Nearly 4 Years of Follow-up

Shilpa Gupta, MD¹; Jonathan E. Rosenberg, MD²; Rana R. McKay, MD³; Thomas W. Flaig, MD⁴; Daniel Peter Petrylak, MD⁵; Christopher J. Hoimes, DO⁶; Terence W. Friedlander, MD⁷; Mehmet Asim Bilen, MD⁸; Sandy Srinivas, MD⁹; Earle Burgess, MD¹⁰; Jaime R. Merchan, MD¹¹; Scott Tagawa, MD¹²; Jason Brown, MD¹³; Yao Yu, PhD¹⁴; Anne-Sophie Carret, MD¹⁴; Heidi S. Wirtz, PharmD, PhD¹⁴; Maria Guseva, MD, PharmD¹⁵; Blanca Homet Moreno, MD, PhD¹⁶; Matthew I. Milowsky, MD¹⁷


¹Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA; ²Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA; ³University of California San Diego, San Diego, CA, USA; ⁴University of Colorado Comprehensive Cancer Center, Aurora, CO, USA; ⁵Yale Cancer Center, New Haven, CT, USA; ⁶Duke Cancer Institute, Duke University, Durham, NC, USA; ⁷University of California San Francisco Medical Center, San Francisco, CA, USA; ⁸Winship Cancer Institute of Emory University, Atlanta, GA, USA; ⁹Stanford University Medical Center, Stanford, CA, USA; ¹⁰Atrium Health Levine Cancer Institute, Charlotte, NC, USA; ¹¹University of Miami, Miami, FL, USA; ¹²Weill Cornell Medical Center, New York, NY, USA; ¹³University Hospitals Cleveland Medical Center, Cleveland, OH, USA; ¹⁴Seagen Inc, Bothell, WA, USA; ¹⁵Astellas Pharma, Northbrook, IL, USA; ¹⁶Merck & Co., Inc., Rahway, NJ, USA; ¹⁷University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA

2023 ASCO ANNUAL MEETING #ASCO23

PRESENTED BY: Dr. Shilpa Gupta, MD - @shilpaonc Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

Rationale of Combining Enfortumab Vedotin and Pembrolizumab

*Enfortumab vedotin plus pembrolizumab is an investigational drug combination; the safety and efficacy of the drug combination has not been established. The proposed mechanism of action for the combination is based upon preclinical studies with enfortumab vedotin and other antibody-drug conjugates. Information provided is for scientific information only and should not be interpreted as an intent to promote unapproved uses. © 2022 Seagen Inc, Bothell, WA 90201. All informative RevInVOV 2007

PRESENTED BY: Dr. Shilpa Gupta, MD

2023 ASCO

ANNUAL MEETIN

#ASCO23

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

Study Design – EV+P Cohorts

EV-103 is an open-label, multiple cohort, phase 1b/2 study

AE = adverse events; BICR = blinded independent central review; DCR = disease control rate; DOR = duration of response; EV = enfortumab vedotin; ORR = objective response rate; OS = overall survival; P = pembro; PFS = progression-free survival; PK = pharmacokinetics; 1L = first-line

Exploratory endpoints: biomarkers of activity including baseline PD-L1 status and Nectin-4 expression; Dose Escalation/Cohort A completed enrollment in Jan 2019; Data cutoff was 16 Sep 2022 ^aPatients assigned to EV 1.25 mg/kg + pembro and for whom study treatment was administered as 1L therapy

bThe efficacy endpoints per RECIST v1.1 by BICR are presented for the first time herein. Results by investigator assessment have been previously published (Hoimes CJ, et al. JCO 2022).

PRESENTED BY: Dr. Shilpa Gupta, MD

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

Overall Objective Response Rates by BICR

High confirmed ORR (73.3%) with high concordance rate between BICR and INV assessments

	Dose Escalation + Cohort A (N = 45)
bjective Response Rate, n (%)	33 (73.3)
95% CIª for ORR	58.1-85.4
Best Overall Response, n (%)	
Complete response	7 (15.6)
Partial response	26 (57.8)
Stable disease	5 (11.1)
Progressive disease	5 (11.1)
No assessment ^b	2 (4.4)
Disease Control Rate, n (%)	38 (84.4)
95% CIª for DCR	70.5-93.5
Concordance rate of BOR between BICR and INV ^c assessment	95.3%

BICR = blinded independent central review; BOR = best overall response; CI = confidence interval; DCR = disease control rate; INV = investigator; ORR = objective response rate ^aCl was computed using the Clopper-Pearson method (Clopper 1934) ^bPatients had no response assessment post-baseline ^{cORD} as the computed using the Clopper 2016 (72.20)

°ORR per INV assessment was 33/45 (73.3%)

#ASCO23

PRESENTED BY: Dr. Shilpa Gupta, MD

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

Duration of Treatment and Summary of Disposition

40% of patients remain on study after ~4 years of follow-up

	Dose Escalation + Cohort A (N = 45)
Patients on treatment, n (%)	0
Patients off treatment, n (%)	45 (100%)
Reason for treatment discontinuation, n (%)	
Progressive disease per INV	19 (42.2)
Adverse event	15 (33.3)
Patient decision ^a	9 (20.0)
Physician decision ^b	1 (2.2)
Other ^c	1 (2.2)
Patients off study, n (%)	27 (60.0)
Reason for study discontinuation, n (%)	
Death	22 (48.9)
Patient withdrawal of consent	4 (8.9)
Lost to follow-up	1 (2.2)
Median follow-up (min, max)	47 months (0.66, 55.49)

 Patients were treated for a median duration of 7 months (min, max: 0.7, 32.9)

• Patients received a median of 9 treatment cycles (min, max: 1, 36)

INV = investigator assessment; UC = urothelial carcinoma

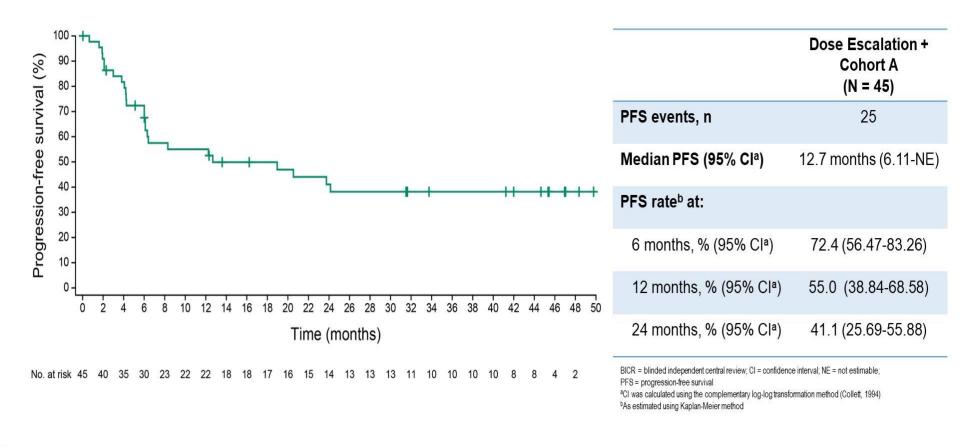
#ASCO23

*2 patients no longer wanted treatment and/or chose hospice; 2 had no evidence of disease; 2 underwent surgery for UC (1 radical cystectomy, 1 nephroureterectomy),

1 wanted standard of care without protocol restriction, 1 had multiple adverse events, and 1 withdrew consent

^bPatient with sustainable partial response and treatment hold of > 1 year

Patient completed 35 cycles of pembrolizumab and EV discontinued earlier due to grade 2 peripheral neuropathy

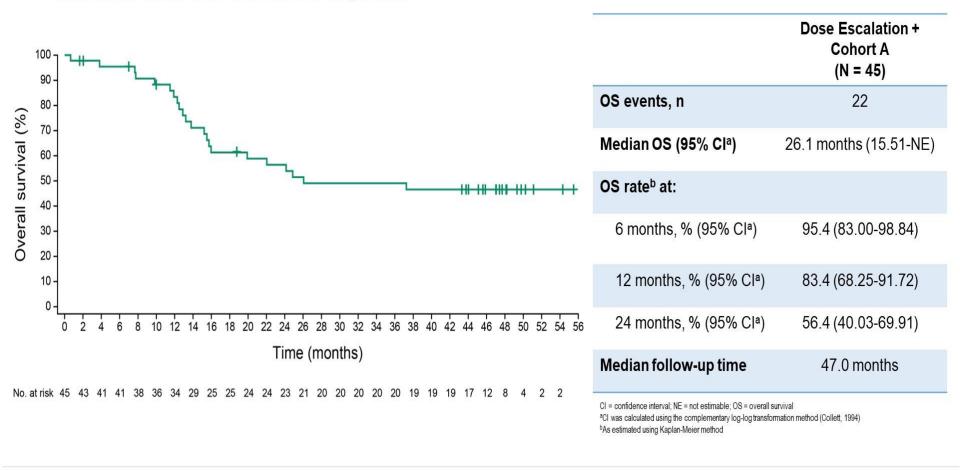

PRESENTED BY: Dr. Shilpa Gupta, MD

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

Progression-Free Survival by BICR

41.1% of patients were progression-free at 24 months

presented by: Dr. Shilpa Gupta, MD


#ASCO23

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

Overall Survival

Median survival exceeds 2 years

2023 ASCO #ASCO23

PRESENTED BY: Dr. Shilpa Gupta, MD

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

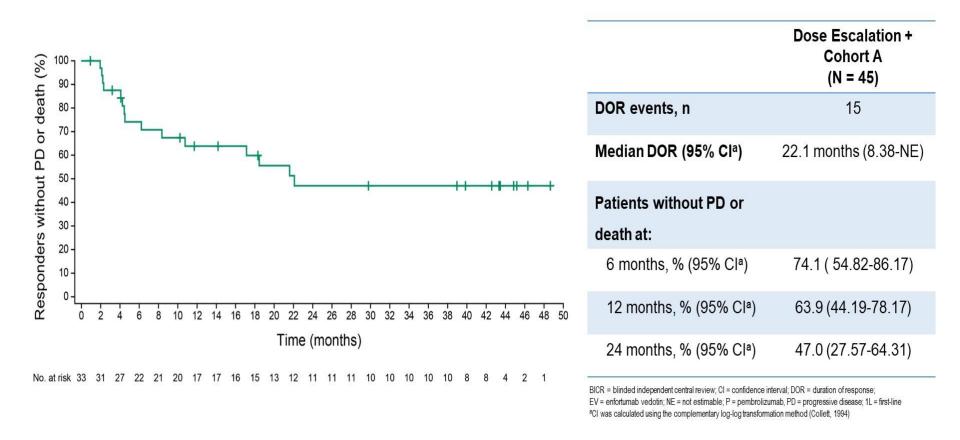
Treatment-Related Adverse Events of Special Interest for Enfortumab Vedotin

Skin reactions and PN were the most common treatment-related AESI for EV

		Dose Escalation + Cohort A (N = 45)								
	Any Grade n (%)	Grade ≥3 n (%)								
Skin reactions	30 (66.7)	9 (20.0)								
Rash maculo-papular	16 (35.6)	5 (11.1)								
Rash macular	7 (15.6)	0								
Peripheral neuropathy ^a	28 (62.2)	2 (4.4)								
Ocular disorders	18 (40.0)	0								
Dry eye	16 (35.6)	0								
Blurred vision	5 (11.1)	0								
Corneal disorders	1 (2.2)	0								
Hyperglycemia	5 (11.1)	4 (8.9)								
Infusion related reactions	3 (6.7)	1 (2.2)								

- Most of the events were of low grade (1 or 2)
- The TRAEs for EV were consistent with previously observed results

AESI = adverse events of special interest, EV = enfortumab vedotin; PN = peripheral neuropathy; TRAE = treatment-related adverse events ^a Peripheral neuropathy Standardised MedDRA Queries (broad scope). n=8 patients had pre-existing peripheral neuropathy and n=37 did not have pre-existing peripheral neuropathy. Preexisting condition includes medical history and conditions ongoing at baseline


PRESENTED BY: Dr. Shilpa Gupta, MD

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

Duration of Response by BICR

1L EV+P is associated with durable responses

PRESENTED BY: Dr. Shilpa Gupta, MD

#ASCO23

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

Subsequent Anticancer-Related Therapies

Patient may have received more than one subsequent anticancer therapy; systemic therapy was the most common

	Dose Escalation + Cohort A (N = 45)
Patients receiving subsequent cancer-related therapy/therapies, n (%)	27 (60.0)
Systemic therapy	22 (48.9)
Palliative radiotherapy	4 (8.9)
Surgical procedureª	4 (8.9)
Other ^b	1 (2.2)
First subsequent systemic therapy, n (%)	
Pembrolizumab ^c	8 (17.8)
Carboplatin-based therapy	5 (11.1)
Other ^d	4 (8.9)
Enfortumab vedotin ^e	3 (6.7)
Sacituzumab govitecan	2 (4.4)

 3 of 8 patients who received subsequent pembrolizumab, did so following progression on EV+P

 2 of 3 patients who received subsequent EV, did so following progression on EV+P

AE = adverse event, EV = enfortumab vedotin; P = pembrolizumab; PN = peripheral neuropathy; TURBT = transurethral resection of bladder tumour; 1L = first-line ^aRadical cystectomy (n=1), nephroureterectomy (n=1), craniotomy (n=1), TURBT (n=1)

^bIntravesicular gemcitabine

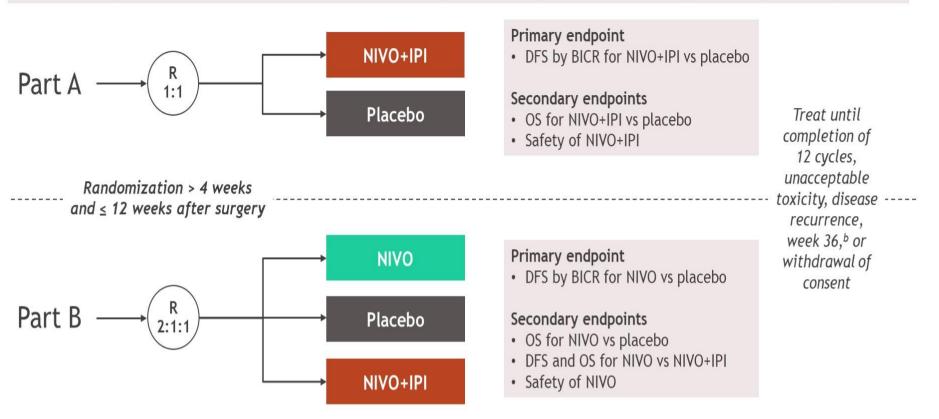
cReasons for study treatment discontinuation: AE (n=4; all PN), investigator-assessed clinical or radiographic progression (n=3), patient decision (n=1); number of cycles of study treatment received (range): 7-21 Includes Cisplatin-based therapy (n=1), Gemcitabine (n=1), Erdafitinib (n=1), other (n=1)

*Reasons for study treatment discontinuation: investigator-assessed radiographic progression (n=2), patient decision (n=1); number of cycles of study treatment received (range): 13-36

PRESENTED BY: Dr. Shilpa Gupta, MD

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

Adjuvant nivolumab plus ipilimumab vs placebo for patients with localized renal cell carcinoma at high risk of relapse after nephrectomy: subgroup analyses from the phase 3 CheckMate 914 (Part A) trial


<u>Robert J. Motzer</u>,¹ Paul Russo,¹ Viktor Grünwald,² Yoshihiko Tomita,³ Philippe Barthélémy,⁴ Jeffrey C. Goh,⁵ Hernan Javier Cutuli,⁶ Steven Blum,⁷ Sai Vikram Vemula,⁷ Burcin Simsek,⁷ Julia Spiridigliozzi,⁷ Aleksander Chudnovsky,⁷ Axel Bex^{8,9}

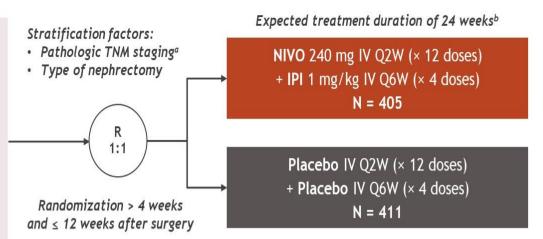
¹Memorial Sloan Kettering Cancer Center, New York, NY; ²Clinic for Internal Medicine (Tumor Research) and Clinic for Urology, West-German Cancer Center Essen, University Hospital Essen, Essen, Germany; ³Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; ⁴Institut de Cancérologie Strasbourg Europe, Strasbourg, France; ⁵ICON Research, South Brisbane, QLD, Australia; ⁶Hospital Sirio Libanes, Buenos Aires, Argentina; ⁷Bristol Myers Squibb, Princeton, NJ; ⁸Netherlands Cancer Institute, Amsterdam, the Netherlands; ⁹University College London, London, UK

Abstract number 4506

CheckMate 914 study design (Part A and Part B)

Adult patients with localized clear cell RCC at high risk of relapse after radical or partial nephrectomy^a

• Patient populations for Part A and Part B were mutually exclusive


^aStratification was based on type of nephrectomy and TNM staging. ^bExpected treatment duration of 24 weeks. Treatment could be extended up to 36 weeks to accommodate dose delays. BICR, blinded independent central review; OS, overall survival; R, randomization; TNM, tumor, node, metastasis. 1. ClinicalTrials.gov. Accessed April 6, 2023. https://clinicaltrials.gov/ct2/show/NCT03138512.

Study design and treatment schedule (Part A)

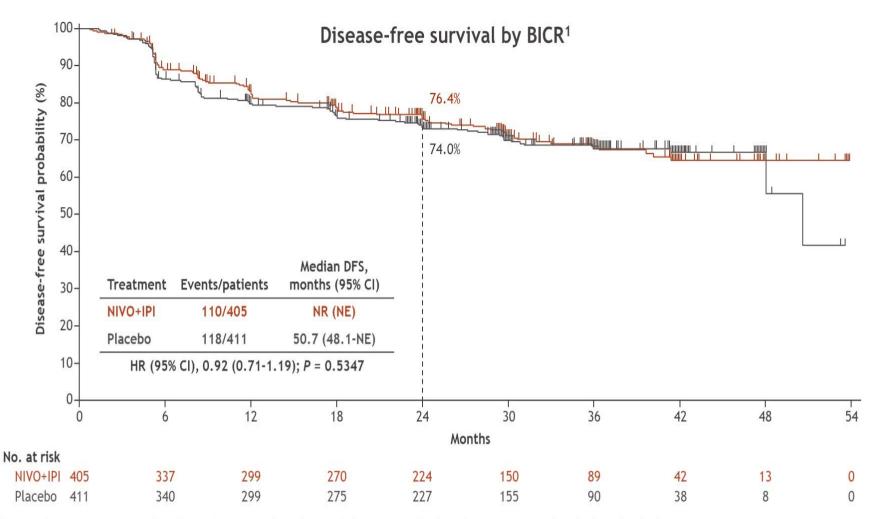
N = 816

Key inclusion criteria^{1,2}

- Radical or partial nephrectomy
- Predominant clear cell histology
- Pathologic TNM staging:
 - $_{\odot}$ pT2a, G3 or G4, N0 M0/pT2b, G any, N0 M0
 - $_{\odot}\,$ pT3, G any, N0 M0
 - o pT4, G any, N0 M0/pT any, G any, N1 M0
- No evidence of residual disease or metastases after nephrectomy, confirmed by BICR

Primary endpoint: DFS by BICR for NIVO+IPI vs placebo Secondary endpoints: OS for NIVO+IPI vs placebo, safety of NIVO+IPI

Schedule	Cycl	le 1	Сус	le 2	Сус	le 3	Cycle 4		Cycle 5		Cycle 6		Cycle 7		Cycle 8		Cycle 9		Cycle 10		Cycle 11		Cycle 12	
Study week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Desing	NIVO+IPI		NIVO		NIVO		NIVO+IPI		NIVO		NIVO		NIV	NIVO+IPI		VO	NIVO		NIVO+IPI		NIVO		NIVO	
Dosing ^c	PBO+	PBO	PE	30	PE	30	PBO	+PBO	PE	РВО		30	PBO	+PBO	РВО		РВО		PBO+PBO		РВО		РВО	


Median follow-up, 37.0 months (minimum follow-up, 15.4 months).

^aStratification by TNM staging (pT2a, G3 or G4, N0 M0 or pT2b, G any, N0 M0 vs pT3, G any, N0 M0 vs pT4, G any, N0 M0 or pT any, G any, N1 M0). ^bTreatment could be extended up to 36 weeks to accommodate dose delays. ^cDose given on day 1 of each cycle.

G, grade; IV, intravenously; PBO, placebo; Q×W, every × weeks.

1. ClinicalTrials.gov. Accessed April 28, 2023. https://clinicaltrials.gov/ct2/show/NCT03138512. 2. Motzer RJ, et al. Lancet 2023;401:821-832.

Adjuvant NIVO+IPI in CheckMate 914 (primary endpoint)

As the DFS endpoint was not met, no formal OS analysis was performed (in total, there were 33 deaths in the NIVO+IPI arm and 28 deaths in the placebo arm).

1. Motzer RJ, et al. Lancet 2023;401:821-832.

CI, confidence interval; HR, hazard ratio. NE, not estimable; NR, not reached.

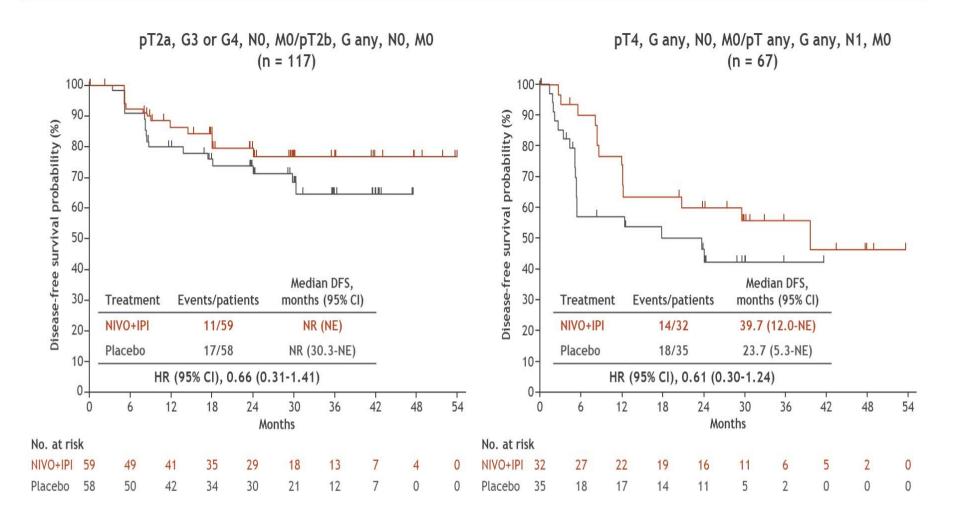
Efficacy assessments in select subgroups

- Pathological TNM stage
- RCC pathology grade
- Sarcomatoid features
- Tumor PD-L1 expression

Key baseline characteristics of ITT patients in select subgroups

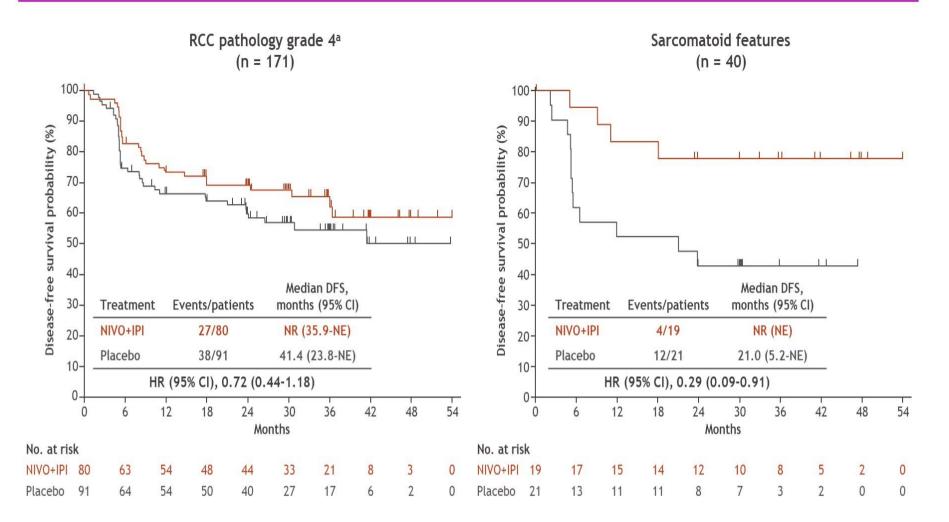
	NIVO+IPI (n = 405)	Placebo (n = 411)
Pathological TNM staging per CRF, %		
pT2a, G3 or G4, N0 M0 or pT2b, G any, N0 M0	15	14
pT3, G any, N0 M0	77	77
pT4, G any, N0 M0 or pT any, G any, N1 M0	8	9
RCC pathology grade per CRF, % ^{a,b}		
G1-2	34	36
G3	47	42
G4	20	22
Sarcomatoid features, % ^a	5	5
Baseline tumor PD-L1 status, % ^{c,d}		
≥ 1%	14	11
< 1% or indeterminate/not evaluable	75	78
Not reported	11	11

^aRCC pathology grade and sarcomatoid status were determined by a local pathologist. ^bData were reported using the Fuhrman grading system for the duration of enrollment. If assessment of RCC pathology grade was performed using the WHO/ISUP system, grade was correlated back to the Fuhrman system in order to assess eligibility. ^cPD-L1 testing was performed locally (Labcorp) using a validated TPS-based PD-L1 immunohistochemical assay (Dako PD-L1 IHC 28-8 pharmDx). ^dData by tumor PD-L1 expression were analyzed from a March 2023 database lock as these data were not available from the July database lock used for all other data reported in this presentation.

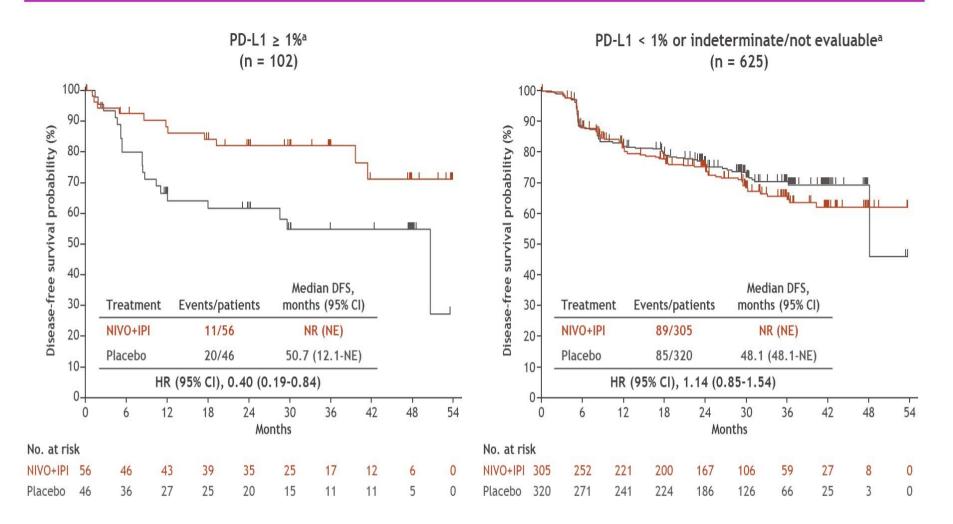

CRF, case report form; ISUP, International Society of Urological Pathology; ITT, intent-to-treat (all randomized population); PD-L1, programmed death ligand 1; TPS, tumor proportion score; WHO, World Health Organization.

Disease-free survival per BICR in select subgroups

Subgroup	NIVO+IPI Events/no.	Placebo of patients	Unst	ratified HR for DFS (95% CI)
Overall	110/405	118/411	_	0.94 (0.72-1.22)
TNM staging per CRF				
pT2a, G3 or G4, N0 M0/pT2b, G any, N0 M0	11/59	17/58		0.66 (0.31-1.41)
pT3, G any, N0 M0	85/313	83/317		1.06 (0.79-1.44)
pT4, G any, N0 M0/pT any, G any, N1 M0	14/32	18/35		0.61 (0.30-1.24)
RCC pathology grade ^a per CRF				
G1-2	29/136	33/147		0.95 (0.58-1.57)
G3	54/189	47/173		1.08 (0.73-1.60)
G4	27/80	38/91		0.72 (0.44-1.18)
Sarcomatoid features				
Yes	4/19	12/21	•	0.29 (0.09-0.91)
No	106/386	106/390		1.02 (0.78-1.33)
Baseline tumor PD-L1 status ^b				
≥ 1%	11/56	20/46		0.40 (0.19-0.84)
< 1% or indeterminate/not evaluable	89/305	85/320		1.14 (0.85-1.54)
			0.125 0.25 0.5 1 2 Favors NIVO+IPI ← → Favors pla	4 acebo


^aData were reported using the Fuhrman grading system for the duration of enrollment. If assessment of RCC pathology grade was performed using the WHO/ISUP system, grade was correlated back to the Fuhrman system in order to assess eligibility. ^bData by tumor PD-L1 expression were analyzed from a March 2023 database lock as these data were not available from the July database lock used for all other data reported in this presentation.

Disease-free survival per BICR by pathological TNM stage


Pathological TNM stage was collected per CRF.

Disease-free survival per BICR in patients with RCC pathology grade 4 or sarcomatoid features

^aData were reported using the Fuhrman grading system for the duration of enrollment. If assessment of RCC pathology grade was performed using the WHO/ISUP system, grade was correlated back to the Fuhrman system in order to assess eligibility.

Disease-free survival per BICR in patients by PD-L1 expression

^aData by tumor PD-L1 expression were analyzed from a March 2023 database lock as these data were not available from the July database lock used for all other data reported in this presentation.

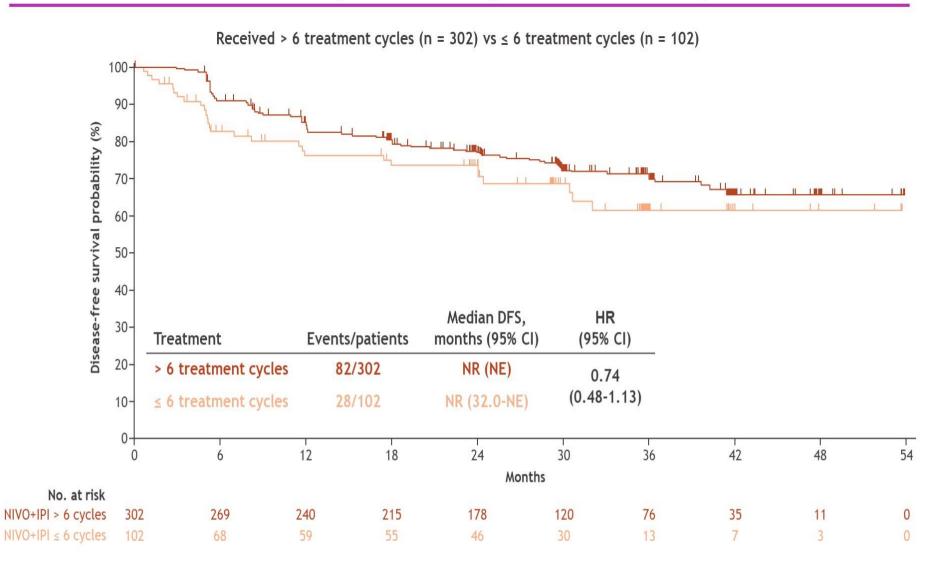
Characteristics and outcomes of patients with ≤ 6 treatment cycles

- We assessed the relationship between early treatment discontinuation and treatment outcomes
- The majority (77/132) of patients who discontinued treatment due to AEs received ≤ 6 treatment cycles (1-2 doses of the NIVO+IPI combination)
- 102 (25%) of 404 treated patients in the NIVO+IPI arm received \leq 6 treatment cycles

Schedule	Cycl	le 1	Сус	le 2	Сус	le 3	Cyc	le 4	Cycle 5 9 10		Сус	Cycle 6		Cycle 7		le 8	Cycle 9		Cycle 10		Cycle 11		Cycle 12				
Study week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24			
Treatment	NIVC)+IPI	NI	VO	NI	/0	NIVC)+IPI	Nľ	VO	Nľ	VO	- Treatment discontinued														
Treatment	PBO+	PBO	PE	30	PE	80	PBO+	PBO	PE	30	PE	30															

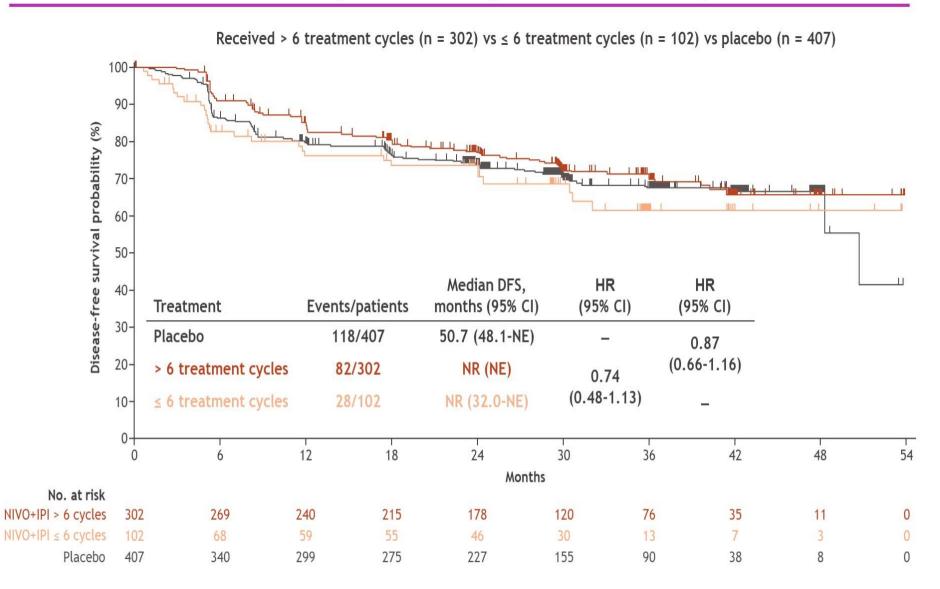
AE, adverse event.

Drug exposure, topline safety, and patient disposition in patients who received < 6 treatment cycles


	NIVO (n = 102)	IPI (n = 101)
Median no. of doses received (range)	3 (1-6)	1 (1-2)
	NIVO (n = 1	
Median duration of therapy (range), months	1.1 (< 0	.1-4.4)
Any grade treatment-related AEs, n (%)ª Grade 1-2 Grade ≥ 3	93 (40/93 53/93	(43)
Any grade treatment-related AEs leading to treatment discontinuation, n (%) ^a Grade 1-2 Grade ≥ 3	69 (29/69 40/69	(42)

• The most common any-grade treatment-related AEs leading to discontinuation were diarrhea (6%), increased alanine aminotransferase (4%), and thyroiditis (4%)

alncludes events reported in all treated patients between first dose and 30 days after the last dose of study drug.


CheckMate 914

Disease-free survival per BICR by treatment cycles received

CheckMate 914

Disease-free survival per BICR by treatment cycles received

Patient-reported outcomes in all treated patients

- EQ-5D-3L
- FKSI-19

Patient-reported outcomes assessments

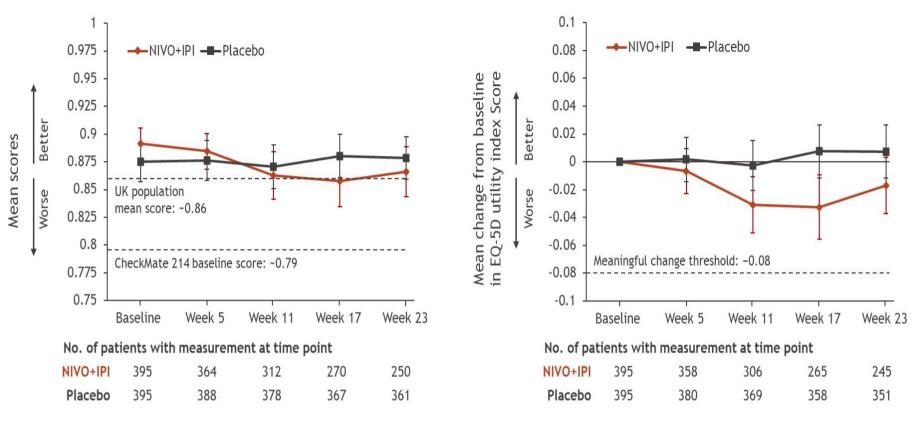
EQ-5D-3L^{1,2} (global health status)

- Utility index: 5 items; range, 0 (death) 1 (full health)
 - Meaningful change threshold: \geq 0.08 points vs baseline^a

FKSI-19^{3,4} (kidney cancer symptom index)

- Total score: 19 items; range, 0-76
 - Meaningful change threshold: \geq 5 points vs baseline^b
- Disease-related symptoms: 9 items; range, 0-36
 - Meaningful change threshold: \geq 3 points vs baseline^b

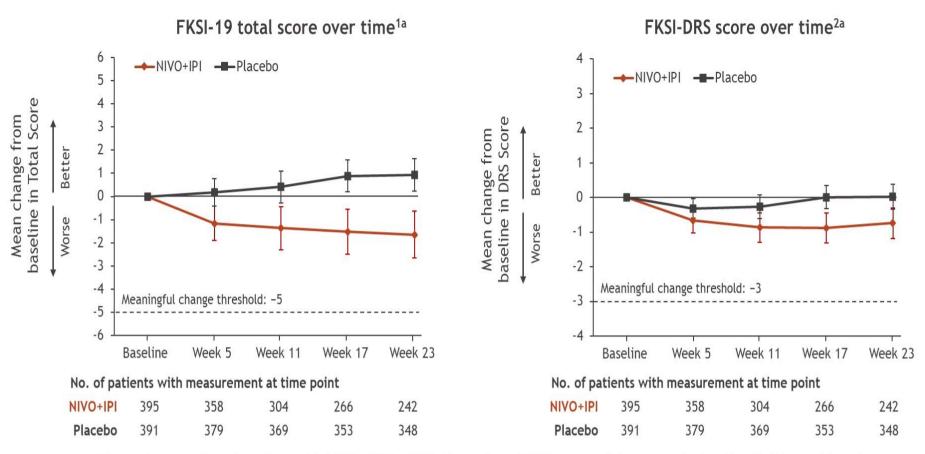
Schedul	e	Сус	le 1	Сус	le 2:	Сус	le 3	Сус	le 4	Сус	le 5	Сус	le 6	Cyc	le 7	Сус	le 8	Сус	le 9	Cycl	e 10	Cycl	e 11	Cycle	e 12
Targetee	d week	1	2	3 4		5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Collectio	on	PF	RO			PF	RO					PF	RO					PF	RO					PR	0
Complet	tion rate, 9	%c																							
	NIVO+IPI	9	8		-	9	7	2		÷		9	6	-		2		94						99	
EQ-5D	Placebo	9	7		-	9	7					96		-				- 97				-		99	
EVEL 45	NIVO+IPI	9	8	2	50	9	7					9	5		1			95						98	8
FKSI-19	Placebo	9	6			9	8					9	7					97				-		99	9


^aEQ-5D-3L threshold is based on literature.² ^bAs there are no established thresholds for the FKSI-19 scores, except for the DRS where 2-3 points was suggested in the literature,⁴ the threshold used here was established using a distribution-based approach. Specifically, one-half the baseline standard deviation rounded to the next integer was used. ^cCompletion rate is equal to the number of patients who filled the questionnaire divided by number of available patients.

1. EuroQol Group. Health Policy 1990;16:199-208. 2. Pickard AS, et al. Health Qual Life Outcomes 2007;5:70. 3. Rothrock NE, et al. Value Health 2013;16:789-796. 4. Cella D, et al. Value Health 2007;10:285-293.

EQ-5D-3L, EuroQoL Group's 3-level version of the EQ-5D; FKSI-19, Functional Assessment of Cancer Therapy-Kidney Symptom Index 19.

Mean scores and changes from baseline in EQ-5D-3L (utility index)


EQ-5D utility index score over time¹

 Mean scores over time with NIVO+IPI were comparable to or higher than the referenced general population (UK) score

Higher score indicates better health state. Bars show 95% CIs. 1. Pickard AS, et al. *Health Qual Life Outcomes* 2007;5:70. • Mean change from baseline with NIVO+IPI did not reach the threshold for meaningful change

Mean changes from baseline in FKSI-19 total and DRS scores

 Mean changes from baseline with NIVO+IPI in FKSI-19 total and DRS scores did not reach the threshold considered meaningful based on the literature^{1,2}

Higher score indicates better health state. Bars show 95% CIs.

^aAs there are no established thresholds for the FKSI-19 scores, except for the DRS where 2-3 points was suggested in the literature,² the threshold used here was established using a distributionbased approach. Specifically, one-half the baseline standard deviation rounded to the next integer was used. 1. Rothrock NE, et al. *Value Health* 2013;16:789-796. 2. Cella D, et al. *Value Health* 2007;10:285-293.

ROTHFOCK NE, et al. value mealth 2013;10:769-790. 2. Cella D, et al. value mealth 2007;10:285-293.

- Exploratory analyses from CheckMate 914 Part A suggest that tumor-specific characteristics (eg, sarcomatoid features) influenced outcome of adjuvant NIVO+IPI treatment
- Early treatment discontinuation (≤ 6 cycles) was associated with shorter disease-free survival but did not appear to be a key factor in trial outcome
- Health-related quality of life scores were relatively stable in the NIVO+IPI group over the entire treatment period, with no meaningful differences compared with placebo
- CheckMate 914 Part B is ongoing to investigate the role of NIVO monotherapy